Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.
One of the main challenges in materials discovery is efficiently exploring the vast search space for targeted properties as approaches that rely on trial-and-error are impractical. We review how methods from the information sciences enable us to accelerate the search and discovery of new materials. In particular, active learning allows us to effectively navigate the search space iteratively to identify promising candidates for guiding experiments and computations. The approach relies on the use of uncertainties and making predictions from a surrogate model together with a utility function that prioritizes the decision making process on unexplored data. We discuss several utility functions and demonstrate their use in materials science applications, impacting both experimental and computational research. We summarize by indicating generalizations to multiple properties and multifidelity data, and identify challenges, future directions and opportunities in the emerging field of materials informatics.
A key challenge in guiding experiments toward materials with desired properties is to effectively navigate the vast search space comprising the chemistry and structure of allowed compounds. Here, it is shown how the use of machine learning coupled to optimization methods can accelerate the discovery of new Pb-free BaTiO (BTO-) based piezoelectrics with large electrostrains. By experimentally comparing several design strategies, it is shown that the approach balancing the trade-off between exploration (using uncertainties) and exploitation (using only model predictions) gives the optimal criterion leading to the synthesis of the piezoelectric (Ba Ca )(Ti Zr Sn )O with the largest electrostrain of 0.23% in the BTO family. Using Landau theory and insights from density functional theory, it is uncovered that the observed large electrostrain is due to the presence of Sn, which allows for the ease of switching of tetragonal domains under an electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.