There is little literature characterizing the temperature-dependent thermo-optic coefficient (TOC) for low pressure chemical vapor deposition (LPCVD) silicon nitride or plasma enhanced chemical vapor deposition (PECVD) silicon dioxide at temperatures above 300 K. In this study, we characterize these material TOC’s from approximately 300-460 K, yielding values of (2.51 ± 0.08) · 10−5K−1 for silicon nitride and (5.67 ± 0.53) · 10−6K−1 for silicon oxide at room temperature (300 K). We use a simplified experimental setup and apply an analytical technique to account for thermal expansion during the extraction process. We also show that the waveguide geometry and method used to determine the resonant wavelength have a substantial impact on the precision of our results, a fact which can be used to improve the precision of numerous ring resonator index sensing experiments.
In this paper, we experimentally demonstrate a broadband Archimedes spiral delay line with high packing density on a silicon photonic platform. This high density is achieved by optimizing the gap between the adjacent waveguides (down to sub-micron scale) in the spiral configuration. However, care must be taken to avoid evanescent coupling, the presence of which will cause the spiral to behave as a novel type of distributed spiral resonator. To this end, an analytical model of the resonance phenomenon was developed for a simple spiral. Moreover, it is demonstrated that this distributed spiral resonator effect can be minimized by ensuring that adjacent waveguides in the spiral configuration have different propagation constants (β). Experimental validations were accomplished by fabricating and testing multiple spiral waveguides with varying lengths (i.e., 0.4, 0.8, and 1.4 mm) and separation gaps (i.e., 300 and 150 nm). Finally, a Linear Density Figure of Merit (LDFM) is introduced to evaluate the packing efficiency of various spiral designs in the literature. In this work, the optimum experimental design with mitigated resonance had a length of 1.4mm and occupied an area of 60 × 60µm, corresponding to an LDFM of 388km-1.
This study proposes a novel technique for a 2D beam steering system using hybrid plasmonic phase shifters with a cylindrical configuration in a 2D periodic array suitable for LIDAR applications. A nanoscale VCSEP design facilitates a sub-wavelength spacing between individual phase shifters, yielding an expanded field of view and side lobes suppression. The proposed design includes a highly doped sub-micron silicon pillar covered by a thin layer of nonlinear material and an additional conductive metal layer. Characterization of a single VCSEP demonstrated a Free Spectral Range (FSR) of 53.28 ± 2.5 nm and a transmission variation of 3dB, with VπL equal to 0.075 V-mm.
Nanophotonics allows to employ light-matter interaction to induce nonlinear optical effects and realize non-conventional memory and computation capabilities, however to date, light-liquid interaction was not considered as a potential mechanism to achieve computation on a nanoscale. Here, we experimentally demonstrate self-induced phase change effect which relies on the coupling between geometric changes of thin liquid film to optical properties of photonic waveguide modes, and then employ it for neuromorphic computing. In our optofluidic silicon photonics system we utilize thermocapillary-based deformation of thin liquid film capable to induce nonlinear effect which is more than one order of magnitude higher compared to the more traditional heat-based thermo-optical effect, and allowing operation as a nonlinear actuator and memory element, both residing at the same compact spatial region. The resulting dynamics allows to implement Reservoir Computing at spatial region which is approximately five orders of magnitude smaller compared to state-of-the-art experimental liquid-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.