There is a growing demand for the development of non-toxic, cost-effective, and environmentally benign green synthetic strategy for the production of metal nanoparticles. Herein, the authors have reported Actinodaphne madraspatana Bedd (AMB) leaves as the bioreducing agent for the synthesis of palladium nanoparticles (PdNPs) and its catalytic activity was evaluated for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol with undisruptive effect on human health and environment. The broad and continuous absorbance spectrum obtained in the UV-visible region indicated the formation of PdNPs. The synthesized PdNPs were found to be crystalline, spherical, and quasi-spherical in shape with an average particle size of 13 nm was confirmed by X-ray diffractometer and transmission electron microscope. Fourier transform infrared spectra revealed the active photo constituents present in the aqueous extract of AMB involved in the bioreduction of palladium ions to PdNPs. The catalytic activity of biosynthesized PdNPs was demonstrated for the reduction of 4-NP via electron-relay process. Also, the influential parameters such as catalyst dosage, concentration of 4-NP, and sodium borohydride were studied in detail. From the present study, PdNPs were found to be a potential nanocatalyst for nitro compound reduction and also for environmental remediation of wastewater effluents from industries.
In the present investigation, iron oxide nanoparticles were synthesized using a simple, rapid and green method using Actinodaphne madraspatna Bedd leaves as reducing agent. The UV-visible spectra showed strong absorption band in the visible region, which confirms the formation of iron oxide nanoparticles. TEM images showed distinct spherical shaped particles with average size of 20 nm. FT-IR spectra depicted the presence of phytomoities in Actinodaphne madraspatna Bedd leaves which may probably act as a reducing and capping layer and thus facilitating the formation of nanoparticles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.