Aim: This research aimed to analyze the presence of microbial contamination and antibiotic residue in beef meat from city slaughterhouses in East Java Province, Indonesia. Materials and Methods: A total of 40 samples from city slaughterhouses were used in this study. The tests for microbial contamination used several methods including total plate count (TPC), most probable number of Escherichia coli, detection of Staphylococcus aureus using Mannitol Salt Agar media, Salmonella spp. detection using Bismuth Sulfite Agar media and Triple Sugar Iron Agar media, and detection of the antibiotic residue by screening tests. Results: Most of the samples were contaminated with E. coli (32.5% positive samples) and S. aureus (20.0% positive samples). The mean values of TPC and S. aureus contamination were lower than the maximum limit of contamination, which were 41.58 CFU/g and 13.93 CFU/g, respectively, while the mean value of E. coli contamination was 27.03 CFU/g which was higher than the maximum limit. A low frequency of TPC (5% positive samples) and Salmonella spp. contamination (2.5% positive samples) was found in meat samples. Meat samples from two of the surveyed slaughterhouses were tested positive for antibiotic residue and six of the 40 samples (15%) were also tested positive for the antibiotic residue. Conclusion: It was concluded that most of the microbial contamination in beef meat from city slaughterhouses was below the maximum limit of contamination and only two slaughterhouses were found antibiotic residues in the meat samples.
Provision of beef meat which does not exceed the maximum microbial contamination limit is expected to meet the requirements to obtain safe, healthy, wholesome, and halal beef. Bacterial contamination during slaughtering process is a safety problem and concern for shelf life in meat production. This study was designed to determine the value of microbial contamination and its risk factors at the stage of the slaughtering process in the abattoirs. This research was conducted by visual observation accompanied by questionnaires and laboratory examination for bacterial contamination testing. The results showed the factor that significantly affected the total plate count (TPC) was carcass cutting (mean: 0.46 × 106 CFU/g; p = 0.035) which was not carried out by the abattoir. The factor that had the greatest effect on the MPN of Escherichia coli was blood removal on the floor position (mean: 40.34 × 106 CFU/g; p = 0.039) while the factors that significantly affected Staphylococcus aureus contamination were blood removal on the floor position (mean: 52.88 × 106 CFU/g; p = 0.025) and carcass cutting which were not carried out by the abattoir (mean: 66.42 × 106 CFU/g; p = 0.015).
Background and Aim: Chicken meat can be contaminated by microorganisms anywhere in the supply chain, from farm to market, and these microorganisms can be transmitted to humans through direct contact, contact with the environment, and food consumption. The microbial contamination has a serious impact on public health. This study aimed to analyze the microbial contamination of chicken meat sampled from local markets in Surabaya, East Java, Indonesia. Materials and Methods: A total of 60 samples of fresh chicken meat obtained from 10 traditional markets (six samples per market) were examined for the presence of bacteria. Staphylococcus aureus, Salmonella spp., and Escherichia coli were identified using Gram staining, culturing, and biochemical tests. The most probable number (MPN) method was used to identify E. coli. Results: Most chicken meat samples were positive for S. aureus (58.3%), Salmonella spp. (48.3%), and E. coli (40%). The samples were considered positive for E. coli if the MPN value was higher than 1×101 CFU/g. Conclusion: High microbial contamination was found in all the chicken meat sampled from local markets in Surabaya. Such contamination can lead to foodborne diseases so, proper hygiene and sanitation standards should be followed from slaughterhouses to the end-users.
Background and Aim: Raw milk can be a source of food-borne disease transmission and a medium for spreading antibiotic-resistant bacteria. Staphylococcus aureus and Escherichia coli are bacteria that have the pathogenic ability to attack host cells and are capable of harboring antibiotic-resistant genes. This study estimated the prevalence and antibiotic resistance of S. aureus and E. coli isolated from raw milk in East Java, Indonesia. Materials and Methods: Two hundred and fifty raw milk samples were collected from five dairy farms in East Java. S. aureus and E. coli were isolated using their respective selective media, whereas antibiotic susceptibility testing was performed using the Kirby–Bauer disk diffusion method. The methicillin-resistant S. aureus (MRSA) was confirmed using the oxacillin resistance screen agar test, and extended-spectrum beta-lactamase (ESBL)-producing E. coli was determined using the double-disk synergy test. The presence of mecA and blaTEM genes were screened by the polymerase chain reaction method. Results: Results indicated that the prevalence of S. aureus was 138 (55.2%) and that E. coli was 176 (70.4%). Of the 138 S. aureus isolated, 27 (19.6%) were MRSA, and among the 176 E. coli isolates identified, 3 (1.7%) were ESBL producers. The mecA gene was observed in 2 (7.4%) MRSA and all 3 (100%) ESBL-producing E. coli isolated harbored blaTEM genes. Conclusion: The presence of MRSA and ESBL-producing E. coli in raw milk is a serious public health threat, and public awareness should be raised about the dangers posed by these pathogenic organisms.
Background and Aim: Motile Aeromonas septicemia is a crucial disease in freshwater fish. Aeromonas hydrophila is a disease agent associated with sporadic fish mortality, food safety, and public health. This study aimed to estimate the prevalence and the presence of the aerolysin gene and antimicrobial resistance profile of A. hydrophila isolated from milkfish in Gresik, Indonesia. Materials and Methods: A total of 153 milkfish gill samples were collected from 16 locations in Gresik and then cultured and identified using biochemical tests. The aerolysin gene was investigated using a polymerase chain reaction, and antimicrobial resistance profiles of the recovered isolates were investigated. Results: Of the 153 examined samples, 35 (22.9%) were confirmed positive for A. hydrophila and 22 (62.9%) presented the aerolysin gene. The recovered isolates were resistant to the following antibiotics: Amoxicillin (62.9%), tetracycline (60%), streptomycin (54.3%), cefotaxime (51.4%), gentamycin (31.4%), kanamycin (28.6%), erythromycin (25.7%), chloramphenicol (20%), and trimethoprim (14.3%). Meanwhile, only ciprofloxacin, nalidixic acid, and imipenem were indicated as susceptible. Conclusion: The presence of the aerolysin gene is vital in determining the virulence of A. hydrophila. The study results indicated a high aerolysin gene prevalence. In addition, this study emphasized antibiotic use monitoring, food safety improvement, and negative impact reduction on human health and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.