Phloem is one of the vital tissues of the vascular system that plays a crucial role in the conduction of photosynthates. In vascular plants, it develops external to the vascular cambium but in a small fraction of eudicots (formerly known as dicots), it occurs within (interxylary) and inside (intraxylary) the secondary xylem. Ontogenetically, it is classified as Strychnos, Combretum, Azima, and Calycopteris types. In all four cases, phloem islands remain enclosed within the secondary xylem but each has unique origins. Similarly, the deposition of the phloem at the pith margin is common in several plants. It develops from procambial derivatives or adjacent pith cells or by initiating an intraxylary phloem cambium. Functionally, this cambium can produce only phloem or both secondary xylem and phloem. In some instances, the deposition of the secondary xylem and phloem in the same direction has also been documented. Some experimental evidence is available on the role of phloem but is it applicable to inter- and intraxylary phloem? The presence of inter- and intraxylary phloem is attributed to a defence mechanism against insects or plants that show sudden and enormous flowering or it can correlate with high temperatures or an unconducive climate in a desert region where sieve tube elements have become nonfunctional due to high temperatures. The present review is an attempt to analyse the role of interxylary and intraxylary phloem.
Young stems of Aerva javanica (Burm.f.) Juss. ex Schult., A. lanata (L.) Juss. ex Schult, A. monsonia Mart., A. sanguinolenta (L.) Blume, Alternanthera bettzickiana (Regel) G. Nicholson, A. philoxeroides (Mart.) Griseb., Gomphrena celosioides Mart., G. globosa L. and Telanthera ficoidea (L.) Moq., showed the renewal of small sectors of cambium by replacing with new segments. Therefore, the secondary phloem formed by earlier cambial segments form isolated islands of phloem enclosed within conjunctive tissues became embedded in the secondary xylem. As the stem grows older, complete ring of cambium is renewed; sometimes an anastomosing network of successive cambia may be seen due to the renewal of larger segments of the cambium. Renewal of the cambium takes place by repeated periclinal division in the parenchyma cells positioned outside to the phloem formed by the previous cambium. Functionally the cambium is bidirectional and exclusively composed of fusiform cambial cells. Differentiation of conducting elements of the secondary xylem and phloem remains restricted to the certain cambial cells while rest of the segments exclusively produce conjunctive cells. Accumulation of starch along with the presence of nuclei in the xylem fibers even after deposition of the secondary wall is consistent in all the species and it seems to be associated with the absence of rays in the secondary xylem and phloem of nine species from four genera. The significance of successive cambia, rayless xylem and nucleated xylem fibers were correlated with plant habit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.