The extraordinary electronic, optical, and mechanical characteristics of 2D materials make them promising candidates for optoelectronics, specifically in infrared (IR) detectors owing to their flexible composition and tunable optoelectronic properties. This review presents the recent progress in IR detectors composed of 2D materials and their hybrid structures, including graphene, black phosphorous, transition metal dichalcogenides, halide perovskite as well as other new layered materials and their heterostructures. The focus is on the short‐wave, mid‐wave, and long‐wave infrared regimes, which pose a grand challenge for rational materials and device designs. The dependence of the device performance on the optical and electronic properties of 2D materials is extensively discussed, aiming to present the general strategies for designing optoelectronic devices with optimal performance. Furthermore, the recent results on 2D material‐based heterostructures are presented with an emphasis on the relationship between band alignment, charge transfer, and IR photodetection. Finally, a summary is given as well as the discussion of existing challenges and future directions.
This review intertwines current engineering strategies tailoring the carrier injection and carrier transport of two-dimensional transition metal dichalcogenides toward efficient electronic devices.
The integration of vertically aligned MoS2 NS with graphene resulted in highly stable, robust and high-performance metal-free hybrid electrocatalysts for hydrogen evolution reaction.
Due to the potential applications in optoelectronic memories, optical control of ferroelectric domain walls has emerged as an intriguing and important topic in modern solid-state physics. However, its device implementation in a single ferroelectric, such as conventional BaTiO 3 or PZT ceramics, still presents huge challenges in terms of the poor material conductivity and the energy mismatch between incident photons and ferroelectric switching. Here, using the generation of photocurrent in conductive α-In 2 Se 3 (a van der Waals ferroelectric) with a two-terminal planar architecture, the first demonstration of optical-engineered ferroelectric domain wall in a non-volatile manner for optoelectronic memory application is reported. The α-In 2 Se 3 device exhibits a large optical-writing and electrical-erasing (on/off) ratio of >10 4 , as well as multilevel current switching upon optical excitation. The narrow direct bandgap of the multilayer α-In 2 Se 3 ferroelectric endows the device with broadband optical-writing wavelengths greater than 900 nm. In addition, photonic synapses with approximate linear weight updates for neuromorphic computing are also achieved in the ferroelectric devices. This work represents a breakthrough toward technological applications of ferroelectric nanodomain engineering by light.
In this work, we design and demonstrate a graphene/silicon (Gr/Si) van der Walls (vdW) heterostructure for high-performance photodetectors, where graphene acts as an efficient carrier collector and Si as a photon absorption layer. The Gr/Si heterojunction exhibits superior Schottky diode characteristics with a barrier height of 0.76 eV and performs well as a self-powered detector responding to 532 nm at zero bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.