Objective. This study aims to propose and validate a subject-specific approach to recognize two different cognitive neural states (relax and pedaling motor imagery (MI)) by selecting the relevant electroencephalogram (EEG) channels. The main aims of the proposed work are: (i) to reduce the computational complexity of the BCI systems during MI detection by selecting the relevant EEG channels, (ii) to reduce the amount of data overfitting that may arise due to unnecessary channels and redundant features, and (iii) to reduce the classification time for real-time BCI applications. Approach. The proposed method selects subject-specific EEG channels and features based on their MI. In this work, we make use of non-negative matrix factorization to extract the weight of the EEG channels based on their contribution to MI detection. Further, the neighborhood component analysis is used for subject-specific feature selection. Main results. We executed the experiments using EEG signals recorded for MI where ten healthy subjects performed MI movement of the lower limb to generate motor commands. An average accuracy of 96.66%, average true positive rate (TPR) of 97.77%, average false positives rate of 4.44%, and average Kappa of 93.33% were obtained. The proposed subject-specific EEG channel selection based MI recognition system provides 13.20% improvement in detection accuracy, and 27% improvement in Kappa value with less number of EEG channels compared to the results obtained using all EEG channels. Significance. The proposed subject-specific BCI system has been found significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduce computational complexity and processing time (two times faster) but also improve the MI detection performance. The proposed method selects EEG locations related to the foot movement, which may be relevant for neuro-rehabilitation using lower-limb movements that may provide a real-time and more natural interface between patient and robotic device.
Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of
and mean Kappa of
. Significance. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.
The proposed approach describes a computationally efficient method for automatic seizure detection in long-term multi-channel EEG recordings. The method does not rely on hand-engineered features, as are required in traditional approaches. Furthermore, the approach is suitable for scenarios where the dictionary once formed and trained can be used for automatic seizure detection of newly recorded data, making the approach suitable for long-term multi-channel EEG recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.