RationalePremature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD.Methods and resultsFirst, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs.ConclusionWe present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, characterized by lung growth arrest and matrix remodeling. Various animal models provide mechanistic insights in the pathogenesis of BPD. Since there is increasing evidence that genetic susceptibility modifies the response to lung injury, we investigated strain-dependent effects in hyperoxia (HYX)-induced lung injury of newborn mice. To this end, we exposed newborn C57BL/6N and C57BL/6J mice to 85% O2 (HYX) or normoxia (NOX; 21% O2) for 28 days, followed by lung excision for histological and molecular measurements. BL/6J-NOX mice exhibited a lower body and lung weight than BL/6N-NOX mice; hyperoxia reduced body weight in both strains and increased lung weight only in BL/6J-HYX mice. Quantitative histomorphometric analyses revealed reduced alveolar formation in lungs of both strains after HYX, but the effect was greater in BL/6J-HYX mice than BL/6N-HYX mice. Septal thickness was lower in BL/6J-NOX mice than BL/6N-NOX mice but increased in both strains after HYX. Elastic fiber density was significantly greater in BL/6J-HYX mice than BL/6N-HYX mice. Lungs of BL/6J-HYX mice were protected from changes in gene expression of fibrillin-1, fibrillin-2, fibulin-4, fibulin-5, and surfactant proteins seen in BL/6N-HYX mice. Finally, Stat3 was activated by HYX in both strains; in contrast, activation of Smad2 was markedly greater in lungs of BL/6N mice than BL/6J mice after HYX. In summary, we demonstrate strain-dependent differences in lung structure and matrix, alveolar epithelial cell markers, and Smad2 (transforming growth factor β) signaling in neonatal HYX-induced lung injury. Strain-dependent effects and genetic susceptibility need be taken into consideration for reproducibility and reliability of results in animal models.
Intrauterine growth restriction (IUGR) is a risk factor for neonatal chronic lung disease (CLD) characterized by reduced alveoli and perturbed matrix remodeling. Previously, our group showed an activation of myofibroblasts and matrix remodeling in rat lungs after IUGR. Because growth hormone (GH) and insulin-like growth factor I (IGF-I) regulate development and growth, we queried 1) whether GH/IGF-I signaling is dysregulated in lungs after IUGR and 2) whether GH/IGF-I signaling is linked to neonatal lung myofibroblast function. IUGR was induced in Wistar rats by isocaloric low-protein diet during gestation. Lungs were obtained at embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Murine embryonic fibroblasts (MEF) or primary neonatal myofibroblasts from rat lungs of control (pnF) and IUGR (pnF) were used for cell culture studies. In the intrauterine phase (E21), we found a reduction in GH receptor (GH-R), Stat5 signaling and IGF-I expression in lungs after IUGR. In the postnatal phase (P3-P23), catchup growth after IUGR was linked to increased GH mRNA, GH-R protein, activation of proliferative Stat5/Akt signaling, cyclin D1 and PCNA in rat lungs. On P23, a thickening of the alveolar septae was related to increased vimentin and matrix deposition, indicating fibrosis. In cell culture studies, nutrient deprivation blocked GH-R/IGF-IR signaling and proliferation in MEFs; this was reversed by IGF-I. Proliferation and Stat5 activation were increased in pnF. IGF-I and GH induced proliferation and migration of pnF; only IGF-I had these effects on pnF. Thus, we show a novel mechanism by which the GH/IGF-I axis in lung myofibroblasts could account for structural lung changes after IUGR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.