Different generations of dendritic architecture with piperazine in core moiety and hydroxyl groups on the periphery were designed by divergent method. 1,4-biz(4,6-trichloro-1,3,5-triazin-2-yl)piperazine was synthesized as a core for dendrimer synthesis. Dendrimer was then grown to G3 from core compound using diethanolamine and cyanuric chloride as branching units. Dendrimer generations were characterized by infrared (IR) spectroscopy [Fourier transform IR (FTIR)], 1 H-nuclear magnetic resonance (NMR), 13 C-NMR, electrospray ionization-mass spectrometry (ESI-MS), and elemental analysis. The thermal behavior of both full-and half-generation dendrimers was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The TGA study revealed that dendrimer generations had a moderate thermal stability. Chlorine-terminated half-generation dendrimers were thermally more stable than hydroxyl-terminated fullgeneration dendrimers. The DSC technique was employed to determine the glass transition temperatures (Tg) of dendrimer generations. It was observed that the glass transition temperatures of synthesized dendrimer generations were of low value, which is similar to the values reported for the polyamidoamine (PAMAM) dendrimer of the same generation. It was also observed that, with the increase in the molecular weight or generation number of dendrimer, the glass transition temperature was also increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.