Power consumption is considered one of the most significant challenges in the wireless network sensors (WSNs). In this paper, an investigation of the power consumption is done by making a comparison between static and dynamic WSNs. We have compared the results of the static network with the results of the dynamic network. Static and dynamic wireless Sensor networks have the same architecture (Homogenous) and proposed protocol. Depending on the suggested protocol, the simulation results show that the energy consumption in the static wireless sensor network was less than the dynamic wireless sensor network. However, moving the sensors in the dynamic WSN present real improvement in delivering packets to the base station. In the proposed routing protocol, transmitting data process is done in a hierarchal way. Cheap sensors are introduced and deploy them intensively to improve the QoS in the network. The final results and the conclusion are reported.
In this work, an efficient digital system is designed using hardware to filter the Electrocardiogram (ECG) signal and to detect the QRS complex (beats). The system implementation has been done by using a Field Programmable Gate Array (FPGA). In the first phase of the hardware system implementation, Finite Impulse Response (FIR) filters are designed for preprocessing and denoising the ECG signal. The filtered signal is then used as the input of the second phase of the hardware implementation to detect and classify the ECG beats. The entire system has been implemented on ALTERA DE II FPGA by designing synthesizable finite state machines. Quartus II tool has been used to simulate and test the system. The designed system has been tested on ECG waves from the MIT-BIH Arrhythmia database by windowing the signal and applying adaptive signal and noise thresholds in each window of processing. The hardware system has achieved an overall accuracy of 98% in the beat detection phase, while providing the detected beats and the classification of irregular heart beat rates in real time.
This paper introduces an efficient digital system design using hardware concepts to filter the Electrocardiogram (ECG) signal and to detect QRS complex (beats). The system implementation has been done using a Field Programmable Gate Array (FPGA) in two phases. In the first phase, Finite Impule Response (FIR) filters are designed for preprocessing and denoising the ECG signal. The filtered signal is then used as the input of the second phase to detect and classify the ECG beats. The entire system has been implemented on ALTERA DE II FPGA by desinging synthesizable finite state machines. The design has been tested on ECG waves from the MIT-BIH Arrhythmia database by windowing the signal and applying adaptive signal and noise theresholds in each window of processing. The hardware system has achieved an overall accuracy of 98% in the beat detection phase, while providing the detected beats and the classification of irregular heat-beat rates in real-time. The synthesized hardware of the ECG denoising and beat detection system yields reasonable hardware resources, making the system attractive to be eventually fabricated as a stand alone hardware system or integrated/embedded within a portable electronic device for monitoring patients’ conditions on a daily basis conveinently.
One of the most important difficulties which doctors face in diagnosing is the analysis and diagnosis of brain stroke in magnetic resonance imaging (MRI) images. Brain stroke is the interruption of blood flow to parts of the brain that causes cell death. To make the diagnosis easier for doctors, many researchers have treated MRI images with some filters by using Matlab program to improve the images and make them more obvious to facilitate diagnosis by doctors. This paper introduces a digital system using hardware concepts to clarify the brain stroke in MRI image. Field programmable gate arrays (FPGA) is used to implement the system which is divided into four phases: preprocessing, adjust image, median filter, and morphological filters alternately. The entire system has been implemented based on Zynq FPGA evaluation board. The design has been tested on two MRI images and the results are compared with the Matlab to determine the efficiency of the proposed system. The proposed hardware system has achieved an overall good accuracy compared to Matlab where it ranged between 90.00% and 99.48%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.