Prior studies have shown that the retention time of the non-volatile spin-transfer torque RAM (STT-RAM) can be relaxed in order to reduce STT-RAM's write energy and latency. However, since different applications may require different retention times, STT-RAM retention times must be critically explored to satisfy various applications' needs. This process can be challenging due to exploration overhead, and exacerbated by the fact that STT-RAM caches are emerging and are not readily available for design time exploration. This paper explores using known and easily obtainable statistics (e.g., SRAM statistics) to predict the appropriate STT-RAM retention times, in order to minimize exploration overhead. We propose an STT-RAM Cache Retention Time (SCART) model, which utilizes machine learning to enable design time or runtime prediction of right-provisioned STT-RAM retention times for latency or energy optimization. Experimental results show that, on average, SCART can reduce the latency and energy by 20.34% and 29.12%, respectively, compared to a homogeneous retention time while reducing the exploration overheads by 52.58% compared to prior work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.