The polydimethylsiloxane (PDMS) membrane commonly used for separation of biobutanol from fermentation broth fails to meet demand owing to its discontinuous and polluting thermal fabrication. Now, an UV‐induced polymerization strategy is proposed to realize the ultrafast and continuous fabrication of the PDMS membrane. UV‐crosslinking of synthesized methacrylate‐functionalized PDMS (MA‐PDMS) is complete within 30 s. The crosslinking rate is three orders of magnitude larger than the conventional thermal crosslinking. The MA‐PDMS membrane shows a versatile potential for liquid and gas separations, especially featuring an excellent pervaporation performance for n‐butanol. Filler aggregation, the major bottleneck for the development of high‐performance mixed matrix membranes (MMMs), is overcome, because the UV polymerization strategy demonstrates a freezing effect towards fillers in polymer, resulting in an extremely high‐loading silicalite‐1/MA‐PDMS MMM with uniform particle distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.