Fall armyworm (Spodoptera frugiperda) is a major migratory pest around the entire world that causes severe damage to agriculture. We designed and synthesized a series of novel isoxazoline derivatives based on the previously discovered active compound H13 to find new and effective candidates against S. frugiperda. Most of them showed excellent insecticidal activity. In addition, a three-dimensional quantitative structure–activity relationship model was established, and compound F32 was designed and synthesized based on the results. The bioassay result showed that compound F32 exhibited excellent activity against S. frugiperda (LC50 = 3.46 mg/L), which was substantially better than that of the positive control fipronil (LC50 = 78.8 mg/L). Furthermore, an insect γ-aminobutyric acid (GABA) enzyme-linked immunosorbent assay indicated that F32 can upregulate the content of GABA in insects in a manner similar to that of fipronil. Molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are vital factors between the binding of F32 and receptors. All of these results suggest that compound F32 could be employed as a novel isoxazoline lead compound to control S. frugiperda.
With the continuous evolution of insect resistance, it is a tremendous challenge to control the fall armyworm (Spodoptera frugiperda) with traditional insecticides. To solve this pending issue, a series of novel isoxazoline derivatives containing diaryl ether structures were designed and synthesized, and most of the target compounds exhibited excellent insecticidal activity. Based on the three-dimensional quantitative structure−activity relationship (3D-QSAR) model analysis, we further optimized the molecular structure with compound L35 obtained and tested for its activity. Compound L35 (LC 50 = 1.69 mg/L) exhibited excellent insecticidal activity against S. frugiperda, which was better than those of commercial fipronil (LC 50 = 70.78 mg/L) and indoxacarb (LC 50 = 5.37 mg/L). The enzyme-linked immunosorbent assay showed that L35 could upregulate the levels of GABA in insects. In addition, molecular docking and transcriptomic results also indicated that compound L35 may affect the nervous system of S. frugiperda by acting on GABA receptors. Notably, through high-performance liquid chromatography (HPLC), we were able to obtain the two enantiomers of compound L35, and the insecticidal activity test revealed that S-(+)-L35 was 44 times more active than R-(−)-L35 against S. frugiperda. This study established the chemistry basis and mechanistic foundations for the future development of pesticide candidates against fall armyworms.
Spodoptera frugiperda is a major migratory agricultural pest, which seriously impedes agricultural production around the world. To discover potent compounds against S. frugiperda, a number of novel isoxazoline derivatives were designed and synthesized and created on account of the identified lead compound F32 (4-(5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)-2-methyl-N-(3-propionamidophenyl)benzamide). Based on the three-dimensional quantitative structure–activity relationship of those compounds, the compound G22 (N-(4-acetamidophenyl)-4-(5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl)-2-methylbenzamide) was developed. A bioassay showed that G22 is highly lethal to S. frugiperda (LC50 = 1.57 mg/L), a more effective control than insecticides fipronil (LC50 = 78.8 mg/L) and chlorantraniliprole (LC50 = 1.60 mg/L). Field trials were also implemented to identify candidate agents. Furthermore, from the insect γ-aminobutyric acid (GABA) enzyme-linked immunosorbent assay, it is obvious that G22 could up-regulate the expression of GABA of insects, which showed a similar result to fipronil. The analysis of molecular docking exhibited that the hydrophobic effect and hydrogen bonds play key roles in the combination between G22 with GABA receptors. This study provides a potent isoxazoline candidate compound for the S. frugiperda control.
Isoxazoline structures are widely found in natural products and are rich in biological activities. This study discloses the development of a series of novel isoxazoline derivatives by introducing acylthiourea fragments to access insecticidal activity. All synthetic compounds were examined for their insecticidal activity against Plutella xylostella, with results showing moderate to strong activity. Based on this, the structure–activity relationship analysis was carried out via the constructed three-dimensional quantitative structure–activity relationship model to further guide the structure optimization, resulting in the optimal compound 32. The LC50 of compound 32 against Plutella xylostella was 0.26 mg/L, demonstrating better activity than the positive control, ethiprole (LC50 = 3.81 mg/L), avermectin (LC50 = 12.32 mg/L), and compounds 1–31. The insect GABA enzyme-linked immunosorbent assay demonstrated that compound 32 might act on the insect GABA receptor, and the molecular docking assay further illustrated the mode of action of compound 32 with the GABA receptor. In addition, the proteomics analysis indicated that the action of compound 32 on Plutella xylostella was multi-pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.