The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of estrogen in the aging blood vessels and thereby enhancing the efficacy and safety of MHT in postmenopausal CVD.
Background Lumbar spinal stenosis (LSS) is a common reason for spine surgery in which ligamentum flavum is resected. Transthyretin (TTR) amyloid is an often unrecognized and potentially modifiable mechanism for LSS that can also cause TTR cardiac amyloidosis. Accordingly, older adult patients undergoing lumbar spine (LS) surgery were evaluated for amyloid and if present, the precursor protein, as well as comprehensive characterization of the clinical phenotype. Methods A prospective, cohort study in 2 academic medical centers enrolled 47 subjects (age 69 ± 7 years, 53% male) undergoing clinically indicated LS decompression. The presence of amyloid was evaluated by Congo Red staining and in those with amyloid, precursor protein was determined by laser capture microdissection coupled to mass spectrometry (LCM‐MS). The phenotype was assessed by disease‐specific questionnaires (Swiss Spinal Stenosis Questionnaire and Kansas City Cardiomyopathy Questionnaire) and the 36‐question short‐form health survey, as well as biochemical measures (TTR, retinol‐binding protein, and TTR stability). Cardiac testing included technetium‐99m‐pyrophosphate scintigraphy, electrocardiograms, echocardiograms, and cardiac biomarkers as well as measures of functional capacity. Results Amyloid was detected in 16 samples (34% of participants) and was more common in those aged ≥ 75 years of age (66.7%) compared with those <75 years (22.3%, p < 0.05). LCM‐MS demonstrated TTR as the precursor protein in 62.5% of participants with amyloid while 37.5% had an indeterminant type of amyloid. Demographic, clinical, quality‐of‐life measures, electrocardiographic, echocardiographic, and biochemical measures did not differ between those with and without amyloid. Among those with TTR amyloid (n = 10), one subject had cardiac involvement by scintigraphy. Conclusions Amyloid is detected in more than a third of older adults undergoing LSS. Amyloid is more common with advancing age and is particularly common in those >75 years old. No demographic, clinical, biochemical, or cardiac parameter distinguished those with and without amyloid. In more than half of subjects with LS amyloid, the precursor protein was TTR indicating the importance of pathological assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.