In order to determine the degree of tolerance of the moss Physcomitrella patens to different abiotic stress conditions, we examined its tolerance against salt, osmotic and dehydration stress. Compared to other plants like Arabidopsis thaliana, P. patens exhibits a high degree of abiotic stress tolerance, making it a valuable source for the identification of genes effecting the stress adaptation. Plants that had been treated with NaCl tolerated concentrations up to 350 mM. Treatments with sorbitol revealed that plants are able to survive concentrations up to 500 mM. Furthermore, plants that had lost 92% water on a fresh-weight basis were able to recover successfully. For molecular analyses, a P. patens expressed sequence tag (EST) database was searched for cDNA sequences showing homology to stress-associated genes of seed plants and bacteria. 45 novel P. patens genes were identified and subjected to cDNA macroarray analyses to define their expression pattern in response to water deficit. Among the selected cDNAs, we were able to identify a set of genes that is specifically up-regulated upon dehydration. These genes encode proteins exerting their function in maintaining the integrity of the plant cell as well as proteins that are known to be members of signaling networks. The identified genes will serve as molecular markers and potential targets for future functional analyses.
SummaryThe cloning of abiotic stress-inducible genes from the moss Physcomitrella patens led to the identification of the gene PpTSPO1, encoding a protein homologous to the mammalian mitochondrial peripheral-type benzodiazepine receptor and the bacterial tryptophane-rich sensory protein. This class of proteins is involved in the transport of intermediates of the tetrapyrrole biosynthesis pathway. Like the mammalian homologue, the PpTSPO1 protein is localized to mitochondria. The generation of PpTSPO1-targeted moss knock-out lines revealed an essential function of the gene in abiotic stress adaptation. Under stress conditions, the PpTSPO1 null mutants show elevated H 2 O 2 levels, enhanced lipid peroxidation and cell death, indicating an important role of PpTSPO1 in redox homeostasis. We hypothesize that PpTSPO1 acts to direct porphyrin precursors to the mitochondria for heme formation, and is involved in the removal of photoreactive tetrapyrrole intermediates.
Curculigo orchioides and C. latifolia have been used as traditional medicines such as antidiabetic and anticancer. This study measured the total phenolics and flavonoid contents as well as analyzed the functional groups and chemical compounds using Fourier-transform infrared (FTIR) spectra and UHPLC-Q-Orbitrap-HRMS profiling for the discrimination of plant parts, geographical origin, and compounds that presumably have a significant contribution as antioxidant and α-glucosidase inhibitors on both plants. The total phenolics and flavonoids contents in Curculigo species varied from 142.09 to 452.47 mg gallic acid equivalent (GAE/g) and from 0.82 to 5.44 mg quercetin equivalent (QE/g), respectively. The lowest IC50 for antioxidant and α-glucosidase inhibitory activities is presented by C. latifolia from a higher altitude region. Principal component analysis (PCA) from FTIR and UHPLC-Q-Orbitrap-HRMS data could discriminate the plant parts and geographical origin. Partial least squares (PLS) analysis has identified several functional groups, such as O–H, C–H, C=O, C–C, C–O, and chemical compounds, unknown-185 and unknown-85, that are most likely to contribute to the antioxidant and α-glucosidase inhibitory activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.