Deforestation in the Brazilian Amazon has resulted in the conversion of >230,000 km of tropical forest, yet little is known on the quantities of biomass consumed or the losses of nutrients from the ecosystem. We quantified the above-ground biomass, nutrient pools and the effects of biomass burning in four slashed primary tropical moist forests in the Brazilian Amazon. Total above-ground biomass (TAGB) ranged from 292 Mg ha to 436 Mg ha. Coarse wood debris (>20.5 cm diameter) was the dominant fuel component. However, structure of the four sites were variable. Coarse wood debris comprised from 44% to 69% of the TAGB, while the forest floor (litter and rootmat) comprised from 3.7 to 8.0% of the TAGB. Total biomass consumption ranged from 42% to 57%. Fires resulted in the consumption of >99% of the litter and rootmat, yet <50% of the coarse wood debirs. Dramatic losses in C, N, and S were quantified. Lesser quantities of P, K, and Ca were lost by combustion processes. Carbon losses from the ecosystem were 58-112 Mg ha. Nitrogen losses ranged from 817 to 1605 kg ha and S losses ranged from 92 to 122 kg ha. This represents losses that are as high as 56%, 68%, and 49% of the total above-ground pools of these nutrients, respectively. Losses of P were as high as 20 kg ha or 32% of the above-ground pool. Losses to the atmosphere arising from primary slash fires were variable among sites due to site differences in concentration, fuel biomass, and fuel structure, climatic fluctuations, and anthropogenic influences. Compared to fires in other forest ecosystems, fires in slashed primary tropical evergreen forests result in among the highest total losses of nutrients ever measured. In addition, the proportion of the total nutrient pool lost from slash fires is higher in this ecosystem compared to other ecosystems due to a higher percentage of nutrients stored in above-ground biomass.
Fires of the tropical forests and savannas are a major source of particulate matter and trace gases affecting the atmosphere globally. A paucity of quantitative information exists for these ecosystems with respect to fuel biomass, smoke emissions, and fire behavior conditions affecting the release of emissions. Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads and the fraction consumed (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH4, CO2, CO, H2, and particles less than 2.5 μm diameter (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO2 (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to <0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.