Bottom-up nanofabrication is increasingly making use of self-assembled DNA to fabricate nanowires and potential integrated circuits, although yields of such electronic nanostructures are inadequate, as is the ability to reliably make electrical measurements on them. In this paper, we report improved yields and unprecedented conductivity measurements for Au nanowires created on DNA origami tile substrates. We created several different self-assembled Au nanowire arrangements on DNA origami tiles that are approximately 70 nm × 90 nm, through anisotropic growth of Au nanorods attached to specific sites. Modifications to the tile design increased yields of the final desired nanostructures as much as 6-fold. In addition, we measured the conductivity of Au nanowires created on these DNA tiles (∼130 nm long, 10 nm diameter, and 40 nm spacing between measurement points) with a four-point measurement technique that utilized electron beam induced metal deposition to form probe electrodes. These nanowires formed on single DNA origami tiles were electrically conductive, having resistivities as low as 4.24 × 10 Ω m. This work demonstrates the creation and measurement of inorganic nanowires on single DNA origami tiles as a promising path toward future bottom-up fabrication of nanoelectronics.
Background
The bacteriophage T7 gene 10 ribosome binding site (g10RBS) has long been used for robust expression of recombinant proteins in Escherichia coli. This RBS consists of a Shine–Dalgarno (SD) sequence augmented by an upstream translational “enhancer” (Enh) element, supporting protein production at many times the level seen with simple synthetic SD-containing sequences. The objective of this study was to dissect the g10RBS to identify simpler derivatives that exhibit much of the original translation efficiency.
Methods and results
Twenty derivatives of g10RBS were tested using multiple promoter/reporter gene contexts. We have identified one derivative (which we call “CON_G”) that maintains 100% activity in E. coli and is 33% shorter. Further minimization of CON_G results in variants that lose only modest amounts of activity. Certain nucleotide substitutions in the spacer region between the SD sequence and initiation codon show strong decreases in translation. When testing these 20 derivatives in the alphaproteobacterium Agrobacterium fabrum, most supported strong reporter protein expression that was not dependent on the Enh.
Conclusions
The g10RBS derivatives tested in this study display a range of observed activity, including a minimized version (CON_G) that retains 100% activity in E. coli while being 33% shorter. This high activity is evident in two different promoter/reporter sequence contexts. The array of RBS sequences presented here may be useful to researchers in need of fine-tuned expression of recombinant proteins of interest.
Figure 8(f) was unfortunately mistakenly used. The two duplicate graphs were among several examples of the type of data the authors obtained in those experiments, so this error did not affect any of the conclusions from the published paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.