The development of modern technology requires a constant increase in reliability and durability of products. Widely used in the practice of domestic and foreign engineering coatings from electrolytic chromium for several hundred hours are triggered, they are unsatisfactorily working on friction and wear at high temperatures. The subject of the study were powder materials based on nickel PG-SR3 and PG-SR4. The work is devoted to the study of the formation of gas-plasma coatings on parts of the cylinder-piston group of internal combustion engines using self-fluxing powders based on nickel, as well as the structure and properties change after coating sputtering, its reflow, subsequent hardening. The purpose of this work is to study powder materials applied to the working surfaces of piston rings by gas-thermal spraying. The object of the study are processes of formation of the structure and properties of coatings from powder materials. The presence in the deposited layer of a solid solution based on nickel, carbide phase, borides of chromium and nickel, chromium silicides is established. The greatest macro- and microhardness is possessed by fused layers containing the greatest number of strengthening phases. The conducted researches and industrial tests allowed to introduce the coating into production.
With a purpose of creating anti-erosion protection on turbine rotor blades the experiments in electrospark alloying using electrodes made of different materials: Т15К6 hard alloy and 15Х11МФШ steel were conducted. Reduction of the roughness of a surface layer having a uniform thickness was achieved upon its hardening with a steel electrode. The electrospark alloying process was perfected. Tests of mechanical properties of blade samples hardened with steel revealed overmatch of GOST requirements for strength and ductility. Increasing of surface layer microhardness was also achieved. For anti-erosion protection of leading edges of the turbine rotor blades it is recommended to replace the applied electrode made ofТ15 К6 alloy with the one made of 15Х11МФШ steel.
For the manufacture of parts and assemblies of the turbopump unit of details of power equipment, welded joints with corrosion resistant steels and heat-resistant alloys are used, requiring various modes heat treatment to achieve the required level of mechanical properties. In the manufacture of parts and assemblies of details of power equipment at the machine-building enterprises of Ukraine, it became necessary to replace semi-finished products. It is necessary to replace sheet products from high-alloy alloys ХН67МВТЮ and 06Х15Н6МВФБ with one alloy with a high complex of physical and mechanical characteristics. In the work, as a replacement for the applied heat-resistant alloys, Inconel 718 alloy welded to 316L steel. Samples of welded joints, processed according to the recommended mode, showed increased corrosion resistance.
The working conditions of the blades of steam turbines require increased hardness of the input edges and resistance to impact erosion, high corrosion resistance. In order to increase the service life of the blades, the inlet edges are quenched by high-frequency currents. The hardened layer was formed by electrospark alloying with T15K6 alloy and 15X11MFSh steel. The use of the widely used T15K6 alloy as a hardened electrode is limited due to the presence of cobalt, as an element forming, as a result of activation, long-lived isotopes that reduce the erosion resistance of the blades. Ultra high speed heating and cooling, pulsed effects of temperatures and pressures result lead to the fact that the composition of the alloyed layer can significantly differ from the composition of the starting materials. The microstructure, microhardness, and thickness of the deposited layer were investigated. The hardened surface was monitored by external inspection, bending tests, microhardness measurements, and microstructure studies. The advantages of 15X11MFSh steel for hardening the input edges of the working blades of steam turbines are substantiated.
Insufficient wear resistance of piston ring materials often limits the growth of machine productivity and service life. The use of traditional drilling methods associated with the diffusion of boron into the solid phase will lead to the formation of a working layer with high fragility. Therefore, the problem of increasing the wear resistance of piston rings without embrittlement is relevant. The use of laser heating during drilling provides the formation of a new layer with special properties. However, optimal properties can only be achieved after the relationship between the process parameters and the depth of the bored layer has been established. The influence of laser heating parameters on the composition and depth of the drilling layer is established in the work. The results of research can be extended to other parts that are subject to intensive wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.