The analysis of axillary and supraclavicular lymph nodes is a primary prognostic factor for the staging of breast cancer. However, due to the size of lymph nodes and the low resolution of PET data, their segmentation is challenging. We investigate the relevance of considering axillary and supraclavicular lymph node segmentation from PET/CT images by coupling Convolutional Neural Networks (CNNs) and Component-Trees (C-Trees). Building upon the U-Net architecture, we propose a framework that couples a multi-modal U-Net fed with PET and CT with a hierarchical model obtained from the PET that provides additional high-level region-based features as input channels. Our working hypotheses are twofold. First, we take advantage of both anatomical information from CT for detecting the nodes, and functional information from PET for detecting the pathological ones. Second, we consider region-based attributes extracted from C-Tree analysis of 3D PET/CT images to improve the CNN segmentation. We carried out experiments on a dataset of 240 pathological lymph nodes from 52 patients scans, and compared our outputs with human expert-defined ground-truth, leading to promising results.
In the context of breast cancer, the detection and segmentation of cancerous lymph nodes in PET/CT imaging is of crucial importance, in particular for staging issues. In order to guide such image analysis procedures, some dedicated descriptors can be considered, especially region-based features. In this article, we focus on the issue of choosing which features should be embedded for lymph node tumor segmentation from PET/CT. This study is divided into two steps. We first investigate the relevance of various features by considering a Random Forest framework. In a second time, we validate the expected relevance of the best scored features by involving them in a U-Net segmentation architecture. We handle the region-based definition of these features thanks to a hierarchical modeling of the PET images. This analysis emphasizes a set of features that can significantly improve / guide the segmentation of lymph nodes in PET/CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.