Xyloglucan is a polysaccharide isolated from chia seed gum (Salvia hispanica L.) and can act as a soluble fiber. In this investigation, several porous hydrogels were prepared from mixtures of chitosan and xyloglucan. To characterize these biomaterials, their mechanical, hydrophilic, structural, and morphological properties were measured, as well as their biodegradability and antimicrobial activity. The pore sizes of the porous hydrogels were 32.8-101.6 μm, and their water retention capacity is proportional to the added amount of xyloglucan. Dynamic degradation of the porous hydrogels with lysozymes showed progressive weight loss during the 14 days of testing. The mechanical properties improved slightly after the addition of xyloglucan. All of these results indicate that the incorporation of vegetable-derived polymers such as xyloglucan improves the properties of chitosan without affecting its antimicrobial capacity. Thus, biomaterials based on chitosan and xyloglucan are a promising option for the design of hydrogel wound dressings for medical applications.
The development of new strategies for wound healing has resulted in the design of biomedical devices using polymers of natural origin. Hydrogels are biomaterials formed by three-dimensional polymeric networks that can retain large amounts of water or biological fluids, and smooth texture similar to living tissue. Chitosan is a linear polysaccharide, (1-4)-2-amino-2deoxy-ß-D-glucan, which has desirable features such as biocompatibility, non-toxicity, hemostasis and antibacterial character. Xyloglucans have different applications in tissue engineering for their physicochemical properties, biocompatibility and control of cell expansion. Hydrogels had been made of homogeneous mixtures prepared of chitosan and purified xyloglucan, followed by a freeze-drying process to develop a flexible and porous structure. Additionally, their mechanical properties such as porosity, solubility, biodegradation, and the antibacterial activity of the hydrogels are studied. The results suggest that the incorporation of xyloglucan favors the characteristics from chitosan-based hydrogels, providing a promising alternative for application in biomaterials with antimicrobial activity.
Chitosan is an amino-polysaccharide, traditionally obtained by the partial deacetylation of chitin from exoskeletons of crustaceans. Properties such as biocompatibility, hemostasis, and the ability to absorb physiological fluids are attributed to this biopolymer. Chitosan’s biological properties are regulated by its origin, polymerization degree, and molecular weight. In addition, it possesses antibacterial and antifungal activities. It also has been used to prepare films, hydrogels, coatings, nanofibers, and absorbent sponges, all utilized for the healing of skin wounds. In in vivo studies with second-degree burns, healing has been achieved in at least 80% of the cases between the ninth and twelfth day of treatment with chitosan coatings. The crucial steps in the treatment of severe burns are the early excision of damaged tissue and adequate coverage to minimize the risk of infection. So far, partial-thickness autografting is considered the gold standard for the treatment of full-thickness burns. However, the limitations of donor sites have led to the development of skin substitutes. Therefore, the need for an appropriate dermal equivalent that functions as a regeneration template for the growth and deposition of new skin tissue has been recognized. This review describes the properties of chitosan that validate its potential in the treatment of skin burns.
Aquaculture combines techniques for breeding and harvesting aquatic organisms used in shrimp production. It is important as a source of income and for generating foreign exchange in the regions where it is practiced. However, the timely detection of diseases continues to be a great challenge for aquaculture and fisheries production. In recent years, Enterocytozoon hepatopenaei (EHP) has emerged as a major pathogen of the Pacific white shrimp Penaeus vannamei in many Asian countries (Vietnam, China, Indonesia, Malaysia, Thailand, India, and Korea). In Latin America, only in Venezuela, and to date, there is no report of its presence in Mexico. It is transmitted directly from shrimp to shrimp by oral or fecal means, cannibalism, or exposure to contaminated water. Hepatopancreatic microsporidiosis (HPM) is mainly associated with stunted growth and severe infections that can cause a poor production cycle, mortality, and problems in larva-producing laboratories. This review aims to overview the main microsporidian parasites and diseases found in white shrimp, including the clinical signs, control and prevention measures for EHP infection, and the detection of HPM using different techniques. In order to offer timely detection tools, different techniques are available for the detection and study of microsporidia. Such as optical microscopy, transmission electron microscopy, and histology; however, for diagnostic purposes, molecular methods are preferred due to their sensitivity, specificity, and short-time analysis. Our review suggests that constant monitoring in shrimp hatcheries and farms is essential to avoid the entry or transference of infected organisms, affecting shrimp production and the ideal development of healthy shrimp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.