Niche segregation between similar species will result from an avoidance of competition but also from environmental variability, including nowadays anthropogenic activities. Gulls are among the seabirds with greater behavioural plasticity, being highly opportunistic and feeding on a wide range of prey, mostly from anthropogenic origin. Here, we analysed blood and feather stable isotopes combined with pellet analysis to investigate niche partitioning between Audouin's gull Larus audouinii and yellow-legged gull Larus michahellis breeding in sympatry at Deserta Island, southern Portugal, during 2014 and 2015. During the breeding season there was considerable overlap in the adults' diet, as their stable isotope values of blood and primary feather (P1) did not differ, and their pellets were comprised mainly by marine fish species. However, Audouin's gulls presented higher occurrences of pelagic fish, while yellow-legged gulls fed more on demersal fish, insects, and refuse. SIAR mixing models also estimated a higher proportion of demersal fish in the diet of yellow-legged gulls. We also found differences between the two gull species in chicks' feathers, suggesting that Audouin's gull adults selected prey with lower carbon isotope values to feed their young. Secondary feather (S8) of Audouin's gull presented higher isotope values compared to yellow-legged gulls, indicating different foraging areas (δ 13 C) and/ or trophic levels (δ 15 N) between the two species in the non-breeding season. During both the all-year and non-breeding periods the yellow-legged gull showed a broader isotopic niche width than Audouin's gull in 2013, and in 2014 the two gull species exhibited different isotopic niche spaces. Our study suggests that both gull species foraged in association with fisheries during the breeding season. In this sense, a discard ban implemented under the new European Union Common Fisheries Policy may lead to a food shortage, therefore future research should closely monitor the population dynamics of Audouin's and yellow-legged gulls.
Summary Pelagic seabird populations have declined strongly worldwide. In the North Atlantic there was a huge reduction in seabird populations following the European colonization of the Azores, Madeira and Canary archipelagos but information on seabird status and distribution for the subtropical region of Cabo Verde is scarce, unavailable or dispersed in grey literature. We compiled and compared the historical and current distribution of all seabird species breeding in the Cabo Verde archipelago, updated their relative abundance, investigated their inland habitat preferences, and reviewed their threats. Currently, the breeding seabird community in Cabo Verde is composed of Bulwer’s Petrel Bulweria bulwerii, White-faced Storm-petrel Pelagodroma marina aedesorum, Cape Verde Shearwater Calonectris edwardsii, Cape Verde Storm-petrel Hydrobates jabejabe, Cape Verde Petrel Pterodroma feae, Boyd's Shearwater Puffinus lherminieri boydi, Brown Booby Sula leucogaster, and Red-billed Tropicbird Phaethon aethereus. One breeding species is currently extinct, the Magnificent Frigatebird Fregata magnificens. The relative abundance of Cape Verde Shearwater, Boyd’s Shearwater, Cape Verde Petrel, and Cape Verde Storm-petrel was determined from counts of their nocturnal calls in Santo Antão, São Vicente, Santa Luzia, Branco, Raso and São Nicolau. Cape Verde Petrel occurred only on mountainous islands (Santo Antão, São Nicolau, Santiago, and Fogo) from mid-to high elevations. Larger species such as the Cape Verde Shearwater and Boyd’s Shearwater exhibited a wider distribution in the archipelago, occurring close to the coastline but at lower densities on populated islands. Small procellariforms such as the Cape Verde Storm-petrel occurred at high densities only on rat-free islets and in steep areas of main islands where introduced cats and rats are unlikely to occur. The main threats to seabird populations in Cabo Verde range from predation by introduced predators, habitat alteration or destruction, and some residual human persecution.
In the oligotrophic tropical marine environment resources are usually more patchily distributed and less abundant to top predators. Thus, spatial and trophic competition can emerge, especially between related seabird species belonging to the same ecological guild. Here we studied the foraging ecology of two sympatric species–brown booby (BRBO) Sula leucogaster (breeding) and red-footed boobies (RFBO) Sula sula (non-breeding)–at Raso islet (Cabo Verde), across different seasons. Sexual segregation was only observed during Jun-Oct, when RFBO were present, with larger females BRBO remaining closer to the colonies, while males and RFBO travelled further and exploited different habitats. Overall, species appeared to prefer areas with specific oceanic features, particularly those related with oceanic currents and responsible for enhancing primary productivity in tropical oceanic areas (e.g. Sea Surface Height and Ocean Mixed Layer Thickness). Female BRBOs showed high foraging-site fidelity during the period of sympatry, while exploiting the same prey species as the other birds. However, during the months of co-existence (Jun.-Oct.), isotopic mixing models suggested that female BRBO would consume a higher proportion of epipelagic fish, whereas female RFBO would consume more squid compared to the other birds, possibly due to habitat-specific prey availability and breeding energy-constraints for BRBO. We conclude that divergent parental roles, environmental conditions, habitat preference and competition could be mechanisms simultaneously underlying sexual segregation for BRBO during a period of co-existence, while inter-specific foraging differences appear to be more affected by habitat preference and different breeding stages. These results support previous statements that BRBO can adapt their foraging ecology to different circumstances of environmental conditions and competition, and that marine physical features play an important role in foraging decisions of boobies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.