Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Campylobacter species are common foodborne pathogens associated with cases of human gastroenteritis worldwide. A detailed understanding of the prevalence, contamination levels and molecular characteristics of Campylobacter spp. in cattle and chicken, which are likely the most important sources of human contamination, is imperative. A collection of 1243 poultry meat samples (665 chicken breasts and 578 chicken thighs) and 1203 bovine meat samples (689 hamburgers and 514 knife-cut meat preparations) were collected at retail outlets, in randomly selected supermarkets located in different Italian regions during one year. Of these samples, 17.38% of the poultry meat and 0.58% of the bovine meat samples tested positive for Campylobacter, of which 131 were Campylobacter jejuni (57.96%) and 95 were Campylobacter coli (42.03%). Campylobacter isolates were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and Campylobacter transmission route to humans. All isolates were molecularly characterized by pulse field gel electrophoresis (PFGE), and further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. Antibiotic resistance was also investigate. The highest levels of resistance among chicken strains were observed for ciprofloxacin (88.25%), nalidixic acid (81.45%) and tetracycline (75.6%). PFGE analysis revealed 73 pulsotypes for C. jejuni and 54 pulsotypes for C. coli, demonstrating the existance of different and specific clones circulating in Italy. MLST of C.jejuni isolates mainly clustered in the CC353, CC354, CC21, CC206 and CC443; while C.coli isolates clustered only in CC828. The most common flaA alleles were 287 for C. jejuni and 66 for C. coli. Our study confirms that poultry meat is the main source of Campylobacteriosis, whereas red meat had a low level of contamination suggesting a minor role in transmission. The high presence of Campylobacter in retail chicken meat, paired with its increased resistance to antimicrobials with several multidrug resistance profiles detected, is alarming and represents a persistent threat to public health.
The key factor in the timely conclusion of this investigation was intersectoral collaboration among epidemiologists, microbiologists, veterinarians, statisticians and health and food safety authorities at national, regional and local levels.
Campylobacter spp. are among the microorganisms most commonly associated with foodborne disease. Swine are known to be the main reservoir of Campylobacter coli and a possible source infection of humans as a result of carcass contamination at slaughter. The aim of this study was to evaluate the prevalence of C. coli contamination in swine carcasses, the antimicrobial resistance (AMR) patterns of isolates and the genetic diversity between strains obtained from swine and those isolated from humans. The prevalence of contamination was higher on carcasses (50.4%) than in faeces (32.9%). The 162 C. coli isolated from swine were examined by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The results of PFGE indicated a high genetic diversity among the isolates, with 25 different PFGE types. MLST assigned 51 sequence types (STs) to isolates. The most common genotype was ST-854 (16.04%), ST-9264 (10.49 %) and ST-1016 (6.08 %). Results of AMR showed a high resistance to quinolones and fluoroquinolones together with aminoglycosides and tetracycline. Many strains were multi-resistant with predominant R-type TeSCipNa (57%). Five resistance genes were detected along with mutation in the gyrA gene. A strong correlation between phenotypic and genotypic resistance was found for fluoroquinolone and tetracycline. Genetic profiles obtained in swine isolates were compared to those of 11 human strains. All human strains and 64.19% of animal strains (104/162) were assigned to the ST-828 clonal complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.