Glucose transport in the rat erythrocyte is subject to feedback regulation by sugar metabolism at high but not at low temperatures [Abumrad et al. (1988) Biochim. Biophys. Acta 938, 222-230]. This indicates that temperature, which is known to alter membrane fluidity, also alters sensitivity of transport to regulation. In the present work, we have investigated a possible correlation between the effects of temperature on rate-limiting steps of glucose transport and on membrane fluidity. The dependences of methylglucose efflux and influx on cis and trans methylglucose concentrations were studied at temperatures between 17 and 37 degrees C. Membrane fluidity was monitored over the same temperature range by using electron paramagnetic resonance spectroscopy. External sugar did not affect efflux, and the Km and Vmax of sugar exit were respectively the same as the Km and Vmax of equilibrium exchange. These Km's were relatively temperature independent, but the Vmax's increased sharply with temperature. The Km and Vmax of methylglucose entry were respectively much lower than the Km and Vmax of exit and exchange. Consistent with the above, intracellular sugar greatly enhanced sugar influx, and did so by increasing the influx Vmax without affecting the influx Km. Both lines of evidence indicated that the conformational change of the empty sugar-binding site from in-facing to out-facing orientation is the rate-limiting step of sugar entry into the rat erythrocyte. This was the case at all temperatures; however, the discrepancies of coefficients declined significantly with increasing temperature.2+ The temperature dependence of the slowest step (change from in- to out-facing empty carrier) was evaluated.(ABSTRACT TRUNCATED AT 250 WORDS)
Measurements of initial glucose entry rate and intracellular glucose concentration in cultured cells are difficult because of rapid transport relative to intracellular volume and a substantial extracellular space from which glucose cannot be completely removed by quick exchanges of medium. In 3T3-L1 cells, we obtained good estimates of initial entry of [14C]methylglucose and D-[14C]glucose with 1) L-[3H]glucose as an extracellular marker together with the [14C]glucose or [14C]methylglucose in the substrate mixture, 2) sampling times as short as 2 s, 3) ice-cold phloretin-containing medium to stop uptake and rinse away the extracellular label, and 4) nonlinear regression of time courses. Methylglucose equilibrated in two phases--the first with a half-time of 1.7 s and the second with a half-time of 23 s; it eventually equilibrated in an intracellular space of 8 microliters/mg protein. Entry of glucose remained almost linear for 10 s, making its transport kinetics easier to study (Km = 5.7 mM, Vmax = 590 nmol.s-1.ml-1 cell water). Steady-state intracellular glucose concentration was 75-90% of extracellular glucose concentration. Cells grown in a high-glucose medium (24 mM) exhibited a 67% reduction of glucose-transport activity and a 50% reduction of steady-state ratio of intracellular glucose to extracellular glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.