In this work, a hybrid sensor based on a section of hollow square core fiber (HSCF) spliced between two single mode fibers is proposed for the measurement of refractive index of liquids. The sensor, with a length of a few millimeters, operates in a transmission configuration. Due to the HSCF inner geometry, two different interferometers are generated. The first, a Mach-Zehnder interferometer, is insensitive to the external refractive index, and presents a sensitivity to temperature of (29.2 ± 1.1) pm/°C. The second one, a cladding modal interferometer, is highly sensitive to the external refractive index. An experimental resolution of 1.0 × 10−4 was achieved for this component. Due to the different responses of each interferometer to the parameters under study, a compensation method was developed to attain refractive index measurements that are temperature independent. The proposed sensor can find applications in areas where refractive index measurements are required and the control of room temperature is a challenge, such as in the food and beverage industry, as well as in biochemical or biomedical industries.
Antiresonant hollow core fibers (ARHCFs) have gained some attention due to their notoriously attractive characteristics on managing optical properties. In this work, an inline optical fiber sensor based on a hollow square core fiber (HSCF) is proposed. The sensor presents double antiresonance (AR), namely an internal AR and an external AR. The sensor was designed in a transmission configuration, where the sensing head was spliced between two single mode fibers (SMFs). A simulation was carried out to predict the behaviors of both resonances, and revealed a good agreement with the experimental observations and the theoretical model. The HSCF sensor presented curvature sensitivities of −0.22 nm/m−1 and −0.90 nm/m−1, in a curvature range of 0 m−1 to 1.87 m−1, and temperature sensitivities of 21.7 pm/°C and 16.6 pm/°C, in a temperature range of 50 °C to 500 °C, regarding the external resonance and internal resonance, respectively. The proposed sensor is promising for the implementation of several applications where simultaneous measurement of curvature and temperature are required.
An inline optical fiber sensor is proposed to monitor in real time the evaporation process of ethanol–water binary mixtures. The sensor presents two interferometers, a cladding modal interferometer (CMI) and a Mach–Zehnder interferometer (MZI). The CMI is used to acquire the variations in the external medium refractive index, presenting a maximum sensitivity of 387 nm/RIU, and to attain the variation in the sample concentration profile, while the MZI monitors temperature fluctuations. For comparison purposes, an image analysis is also conducted to obtain the droplet profile. The sensor proposed in this work is a promising alternative in applications where a rigorous measurement of volatile organic compound concentrations is required, and in the study of chemical and physical properties related to the evaporation process.
A Fabry Perot (FP) based fiber sensor for multiparameter measurement is proposed. The sensor is constituted by a short section of a hollow square core fiber (HSCF) spliced between a single mode fiber and a long section of a silica capillary tube. In a reflection scheme, several FP cavities are enhanced in different areas of the HSCF. In a single 439 μm long sensing head, three FP cavities are excited. Using the Fourier band-pass filter method, each cavity was individually monitored towards variations of pressure, temperature, and curvature. The maximum sensitivities of (3.23 ± 0.04) nm/MPa, (9.6 ± 0.3) pm/°C, and (-32 ± 1) pm/m-1 were obtained for pressure, temperature, and curvature, respectively within a measurement range of 0.4 MPa, 110°C, and 9 m-1. The distinct responses of the FP cavities to the measurands allow for a triple-hybrid application of the sensor towards simultaneous measurement of pressure, temperature, and curvature. The proposed sensor is robust with simple fabrication and small dimensions, revealing promising to be employed in a wide range of applications where the measurement of several physical parameters is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.