Algae are abundant sources of bioactive components with extensive therapeutic properties, receiving much interest in recent years. The research on marine brown algae, namely one of its polysaccharide-fucoidan, has increased exponentially. Fucoidan is a sulfated cell-wall polysaccharide with several reported biological properties including anticancer, antivirus, anticoagulant, antioxidant and anti-inflammatory effects. In this study, fucoidan was functionalized by grafting methacrylic groups in the chain backbone, photo-cross-linkable under visible light to obtain biodegradable structures for tissue engineering. The functionalization reaction was carried out by concentrations (8 and 12%) of methacrylic anhydride (MA). The modified fucoidan (MFu) was characterized by FTIR and 1 HNMR spectroscopy to confirm the functionalization. Further, modified fucoidan was photo-cross-linked under visible light and using superhydrophobic surfaces, to obtain spherical particles with controlled geometries benefiting from the high repellence of the surfaces. When using higher concentrations of MA, the particles were observed to exhibit a smaller average diameter. Moreover, the behavior of L929 mouse fibroblast-like cells was evaluated when cultured in contact with photo-cross-linked particles was investigated, being observed up to 14 days in culture. The photo-cross-linking of MFu under visible light enables thus the formation of particles here suggested as potentially relevant in a wide range of biomedical applications.
Molecular gradients are common in biosystems and play an essential role in physiological and pathological processes. During carcinogenesis, for example, hyaluronan (HA) homeostasis is dysregulated by cancer cells and the altered synthesis and degradation processes result in the formation of HA gradients within the tumor microenvironment. Herein, a platform is developed to study the biological role of HA gradient in breast cancer cells. Cells with different aggressiveness and expression of CD44-the main HA receptor usually overexpressed in breast cancers, are selected for this study. The developed platform is compatible with several imaging modalities and allows assessment of cell density, morphology, CD44 expression, and cell motility in a function of HA density. Using high-throughput analysis, it is shown that cells that do not express CD44 do not change along the gradient, while CD44 positive cells respond differently to the HA gradient depending on the level of CD44 expression and HA density. This different response is associated with the activation of different signaling pathways by the CD44-HA interactions.
IntroductionCancer development, progression, and recurrence rely on bidirectional communication between cancer cells and the extracellular matrix (ECM). [1] This communication results in ECM remodeling and the formation of both physical and molecular gradients, contributing to a malignant interactome and disease progression. [2] Among different ECM components, hyaluronan (HA)-a linear nonsulfated glycosaminoglycan, is an important player in cancer progression. [1,3] HA synthesis and degradation are tightly regulated, but in most tumors, including breast ones, HA homeostasis is altered, favoring the accumulation of HA fragments and oligosaccharides. [1b,3b,4] The generated fragments modulate the cell behavior of different cell populations within the tumor microenvironment by interaction with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.