Brain-computer interface (BCI) systems enable communication without movement. It is unclear why some BCI approaches or parameters are less effective with some users. This study elucidates BCI demographics by exploring correlations among BCI performance, personal preferences, and different subject factors such as age or gender. Results showed that most people, despite having no prior BCI experience, could use the Bremen SSVEP BCI system in a very noisy field setting. Performance tended to be better in both young and female subjects. Most subjects stated that they did not consider the flickering stimuli annoying and would use or recommend this BCI system. These and other demographic analyses may help identify the best BCI for each user.
Brain-computer interface (BCI) systems use brain activity as an input signal and enable communication without movement. This study is a successor of our previous study (BCI demographics I) and examines correlations among BCI performance, personal preferences, and different subject factors such as age or gender for two sets of steady-state visual evoked potential (SSVEP) stimuli: one in the medium frequency range (13, 14, 15 and 16 Hz) and another in the high-frequency range (34, 36, 38, 40 Hz). High-frequency SSVEPs (above 30 Hz) diminish user fatigue and risk of photosensitive epileptic seizures. Results showed that most people, despite having no prior BCI experience, could use the SSVEP-based Bremen-BCI system in a very noisy field setting at a fair. Results showed that demographic parameters as well as handedness, tiredness, alcohol and caffeine consumption, etc., have no significant effect on the performance of SSVEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only five out of total 86 participants indicated change in fatigue during the experiment. 84 subjects performed with a mean information transfer rate of 17.24 ±6.99 bit/min and an accuracy of 92.26 ±7.82% with the medium frequency set, whereas only 56 subjects performed with a mean information transfer rate of 12.10 ±7.31 bit/min and accuracy of 89.16 ±9.29% with the high-frequency set. These and other demographic analyses may help identify the best BCI for each user.
Utilizing changes in steady-state visual evoked potentials (SSVEPs) is an established approach to operate a brain-computer interface (BCI). The present study elucidates to what extent development-specific changes in the background EEG influence the ability to proper handle a stimulus-driven BCI. Therefore we investigated the effects of a wide range of photic driving on children between six and ten years in comparison to an adult control group. The results show differences in the driving profiles apparently in close communication with the specific type of intermittent stimulation. The factor age gains influence with decreasing stimulation frequency, whereby the superior performance of the adults seems to be determined to a great extent by elaborated driving responses at 10 and 11 Hz, matching the dominant resonance frequency of the respective background EEG. This functional interplay was only partially obtained in higher frequency ranges and absent in the induced driving between 30 and 40 Hz, indicating distinctions in the operating principles and developmental changes of the underlying neuronal oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.