Brain-computer interface (BCI) systems enable communication without movement. It is unclear why some BCI approaches or parameters are less effective with some users. This study elucidates BCI demographics by exploring correlations among BCI performance, personal preferences, and different subject factors such as age or gender. Results showed that most people, despite having no prior BCI experience, could use the Bremen SSVEP BCI system in a very noisy field setting. Performance tended to be better in both young and female subjects. Most subjects stated that they did not consider the flickering stimuli annoying and would use or recommend this BCI system. These and other demographic analyses may help identify the best BCI for each user.
Brain-computer interface (BCI) systems use brain activity as an input signal and enable communication without movement. This study is a successor of our previous study (BCI demographics I) and examines correlations among BCI performance, personal preferences, and different subject factors such as age or gender for two sets of steady-state visual evoked potential (SSVEP) stimuli: one in the medium frequency range (13, 14, 15 and 16 Hz) and another in the high-frequency range (34, 36, 38, 40 Hz). High-frequency SSVEPs (above 30 Hz) diminish user fatigue and risk of photosensitive epileptic seizures. Results showed that most people, despite having no prior BCI experience, could use the SSVEP-based Bremen-BCI system in a very noisy field setting at a fair. Results showed that demographic parameters as well as handedness, tiredness, alcohol and caffeine consumption, etc., have no significant effect on the performance of SSVEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only five out of total 86 participants indicated change in fatigue during the experiment. 84 subjects performed with a mean information transfer rate of 17.24 ±6.99 bit/min and an accuracy of 92.26 ±7.82% with the medium frequency set, whereas only 56 subjects performed with a mean information transfer rate of 12.10 ±7.31 bit/min and accuracy of 89.16 ±9.29% with the high-frequency set. These and other demographic analyses may help identify the best BCI for each user.
In this work, the real-time performance of a novel method for detecting Steady-State Visual Evoked Potentials (SSVEP) is evaluated in a brain-computer interface (BCI) spelling task. At the core of this method is a spatial filtering algorithm for extracting SSVEP responses, which in previous off-line studies has shown significantly improved classification performance. The on-line performance is investigated by letting a group of 11 healthy subjects spell the word 'BRAINCOM-PUTERINTERFACE'. An average information transfer rate of 27 bits/minute was obtained in this task and the probability of correctly classifying the user's intention was estimated to 97.5%. In addition, two different letter layouts and selection schemes tailored for SSVEP BCI's are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.