Origami offers a promising alternative for designing innovative soft robotic actuators. While features of origami, such as bi-directional motion and structural anisotropy, haven't been extensively explored in the past, this letter presents a novel design inspired by origami tubes for a bi-directional actuator. This actuator is capable of moving in two orthogonal directions and has separate channels throughout its body to control each movement. We introduce a bottom-up design methodology that can also be adapted for other complex movements. The actuator was manufactured using popular 3D printing techniques. To enhance its durability, we experimented with different 3D printing technologies and materials. The actuator's strength was further improved using silicon spin coating, and we compared the performance of coated, uncoated, and silicononly specimens. The material model was empirically derived by testing specimens on a universal testing machine (UTM). Lastly, we suggest potential applications for these actuators, such as in quadruped robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.