[1] This work compares the performance of six bias correction methods for hydrological modeling over 10 North American river basins. Four regional climate model (RCM) simulations driven by reanalysis data taken from the North American Regional Climate Change Assessment Program intercomparison project are used to evaluate the sensitivity of bias correction methods to climate models. The hydrological impacts of bias correction methods are assessed through the comparison of streamflows simulated by a lumped empirical hydrology model (HSAMI) using raw RCM-simulated and bias-corrected precipitation time series. The results show that RCMs are biased in the simulation of precipitation, which results in biased simulated streamflows. All six bias correction methods are capable of improving the RCM-simulated precipitation in the representation of watershed streamflows to a certain degree. However, the performance of hydrological modeling depends on the choice of a bias correction method and the location of a watershed. Moreover, distribution-based methods are consistently better than mean-based methods. A low coherence between the temporal sequences of observed and RCMsimulated (driven by reanalysis data) precipitation was observed over 5 of the 10 watersheds studied. All bias corrections methods fail over these basins due to their inability to specifically correct the temporal structure of daily precipitation occurrence, which is critical for hydrology modeling. In this study, this failure occurred on basins that were distant from the RCM model boundaries and where topography exerted little control over precipitation. These results indicate that bias correction performance is location dependent and that a careful validation should always be performed, especially on studies over new regions.Citation: Chen, J., F. P. Brissette, D. Chaumont, and M. Braun (2013), Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America, Water Resour. Res., 49,[4187][4188][4189][4190][4191][4192][4193][4194][4195][4196][4197][4198][4199][4200][4201][4202][4203][4204][4205]
Abstract. In climate change impact research, the assessment of future river runoff as well as the catchment-scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques, as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of uncertainty. Within the QBic3 project (Québec-Bavarian International Collaboration on Climate Change), the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models) are investigated using an ensemble of multiple climate and hydrological models.Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use regional climate models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to facilitate the reproduction of historic runoff conditions when used in hydrological models, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For these reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary to obtain the change signal in hydro-climatic projections, or safe to use for the production of present and future river runoff scenarios as it does not alter the change signal.The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the past, regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future periods is weak for most indicators, with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations.
Abstract. Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic 3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference and a future period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.