[1] This work compares the performance of six bias correction methods for hydrological modeling over 10 North American river basins. Four regional climate model (RCM) simulations driven by reanalysis data taken from the North American Regional Climate Change Assessment Program intercomparison project are used to evaluate the sensitivity of bias correction methods to climate models. The hydrological impacts of bias correction methods are assessed through the comparison of streamflows simulated by a lumped empirical hydrology model (HSAMI) using raw RCM-simulated and bias-corrected precipitation time series. The results show that RCMs are biased in the simulation of precipitation, which results in biased simulated streamflows. All six bias correction methods are capable of improving the RCM-simulated precipitation in the representation of watershed streamflows to a certain degree. However, the performance of hydrological modeling depends on the choice of a bias correction method and the location of a watershed. Moreover, distribution-based methods are consistently better than mean-based methods. A low coherence between the temporal sequences of observed and RCMsimulated (driven by reanalysis data) precipitation was observed over 5 of the 10 watersheds studied. All bias corrections methods fail over these basins due to their inability to specifically correct the temporal structure of daily precipitation occurrence, which is critical for hydrology modeling. In this study, this failure occurred on basins that were distant from the RCM model boundaries and where topography exerted little control over precipitation. These results indicate that bias correction performance is location dependent and that a careful validation should always be performed, especially on studies over new regions.Citation: Chen, J., F. P. Brissette, D. Chaumont, and M. Braun (2013), Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America, Water Resour. Res., 49,[4187][4188][4189][4190][4191][4192][4193][4194][4195][4196][4197][4198][4199][4200][4201][4202][4203][4204][4205]
[1] General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.Citation: Chen, J., F. P. Brissette, A. Poulin, and R. Leconte (2011), Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed, Water Resour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.