Ma Huang (equivalent to 0, 12.5, 25, or 50 mg/kg ephedrine) or ephedrine (0, 6.25, 12.5, 25 mg/kg) were administered as one bolus oral dose to male F344 rats with and without caffeine. The herbal medicine Ma Huang (ephedra) in combination with caffeine caused rapid clinical signs of toxicity including salivation, hyperactivity, ataxia, and eventually lethargy, and failure to respond to stimuli. When this syndrome of clinical signs emerged, animals were moribund sacrificed, and a histological analysis for heart lesions performed. Cardiotoxicity included hemorrhage, necrosis, and degeneration in the ventricles or interventricular septum within 2-4 hours after treatment with Ma Huang (ephedra)/caffeine or ephedrine (the principal active component in Ma Huang)/caffeine. There was a steep dose response curve for cardiotoxicity with minimal toxicity seen at levels of Ma Huang (equivalent to 12.5 mg/kg ephedrine) with caffeine. However, cardiotoxic lesions occurred in 28% of animals with Ma Huang dosages equivalent to 25 mg/kg ephedrine with 15 or 30 mg/kg caffeine, and in 90% of animals at Ma Huang exposures equivalent to 50 mg/kg ephedrine with 15 or 30 mg/kg caffeine. Cardiotoxic lesions occurred in 47% of animals in the 25 mg/kg ephedrine groups with caffeine at 7.25, 15, or 30 mg/kg. There was no statistical difference in the occurrence of cardiotoxic lesions when 15 or 30 mg/kg caffeine was combined with Ma Huang equivalent to 25 or 50 mg/kg ephedrine; likewise there was no statistical difference in the occurrence of cardiotoxic lesions when 7.25, 15, or 30 mg/kg caffeine was combined with 25 mg/kg ephedrine. These results show that the cardiotoxic effects of the herbal medicine, Ma Huang, are similar to that of ephedrine, the principal active ingredient in the herbal medicine. The combination of Ma Huang or ephedrine with caffeine enhanced the cardiotoxicity over that with the herbal medicine or the active ingredient alone.
There is increasing use of transcriptional profiling in hepatotoxicity studies in the rat. Understanding hepatic gene expression changes over time is critical, since tissue collection may occur throughout the day. Furthermore, when comparing results from different data sets, times of dosing and tissue collection may vary. Circadian effects on the mouse hepatic transcriptome have been well documented. However, limited reports exist for the rat. In one study approximately 7% of the hepatic genes showed a diurnal expression pattern in a comparison of rat liver samples collected during the day versus livers collected at night. The results of a second study comparing rat liver samples collected at multiple time points over a circadian day suggest only minimal variation of the hepatic transcriptome. We studied temporal hepatic gene expression in 48 untreated F344/N rats using both approaches employed in these previous studies. Statistical analysis of microarray (SAM) identified differential expression in day/night comparisons, but was less sensitive for liver samples collected at multiple times of day. However, a Fourier analysis identified numerous periodically expressed genes in these samples including period genes, clock genes, clock-controlled genes, and genes involved in metabolic pathways. Furthermore, rhythms in gene expression were identified for several circadian genes not previously reported in the rat liver. Transcript levels for twenty genes involved in circadian and metabolic pathways were confirmed using quantitative RT-PCR. The results of this study demonstrate a prominent circadian rhythm in gene expression in the rat that is a critical factor in planning toxicogenomic experiments.
A new tool beginning to have wider application in toxicology studies is transcript profiling using microarrays. Microarrays provide an opportunity to directly compare transcript populations in the tissues of chemical-exposed and unexposed animals. While several studies have addressed variation between microarray platforms and between different laboratories, much less effort has been directed toward individual animal differences especially among control animals where RNA samples are usually pooled. Estimation of the variation in gene expression in tissues from untreated animals is essential for the recognition and interpretation of subtle changes associated with chemical exposure. In this study hepatic gene expression as well as standard toxicological parameters were evaluated in 24 rats receiving vehicle only in 2 independent experiments. Unsupervised clustering demonstrated some individual variation but supervised clustering suggested that differentially expressed genes were generally random. The level of hepatic gene expression under carefully controlled study conditions is less than 1.5-fold for most genes. The impact of individual animal variability on microarray data can be minimized through experimental design.
Pyrogallol (CAS No. 87-66-1), a benzenetriol used historically as a hair dye and currently in a number of industrial applications, was nominated to the National Toxicology Program (NTP) for testing based on lack of toxicity and carcinogenicity data. Three-month and two-year toxicity studies to determine the toxicity and carcinogenicity of pyrogallol when applied to naïve skin (i.e. dermal administration) were conducted in both sexes of F344/N rats and B6C3F1/N mice. In the three-month studies, adult rodents were administered pyrogallol in 95% ethanol 5 days per week for 3 months at doses of up to 150 mg /kg body weight (rats) or 600 mg/kg (mice), Based on the subchronic studies, the doses for the 2-year studies in rats and mice were 5, 20 and 75 mg/kg of pyrogallol. All mice and most rats survived until the end of the three-month study and body weights were comparable to controls. During the 2-year study, survival of dosed rats and male mice was comparable to controls; however survival of 75 mg/kg female mice was significantly decreased compared to controls. The incidences of microscopic non-neoplastic lesions at the site of application were significantly higher in all dosed groups of rats and mice and in both the 3 months and 2-year studies. In the 2-year study, hyperplasia, hyperkeratosis and inflammation tended to be more severe in mice than in rats, and in the mice they tended to be more severe in females than in males. The incidence of squamous cell carcinoma at the site of application (SOA) in 75 mg/kg female mice and SOA squamous cell papillomas in 75 mg/kg male mice were greater than controls. Pyrogallol was carcinogenic in female mice and may have caused tumors in male mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.