Mediation of antinociception via opioid receptors located in the periphery is a viable strategy to produce analgesia without the occurrence of side effects associated with stimulation of opioid receptors located in the central nervous system. Peripheral opioid receptors are particularly important in inflammatory pain states and in the responses to pruritogenic stimuli, and have been implicated in the transmission of visceral pain. Medicinal chemistry approaches to achieve peripheralization of opioid agonists have started with a centrally acting opioid agonist as a template, and introduced features of lipophilicity, hydrophilicity, or combined lipophilicity and hydrophilicity to achieve amphiphilicity. Quaternarization of centrally acting opioid agonists or identification of compounds that serve as substrates for the mdr transporter to achieve transport out of the brain has also been employed. The in vivo assays used to identify peripherally selective compounds have measured a variety of behavioral and pharmacokinetic endpoints, with varying degrees of predictability. This review focuses on a discussion of these methods, as well as a review of those compounds where sufficient data exist to support a claim of peripheralization in vivo.
Opioid receptors in the gastrointestinal (GI) tract mediate the effects of endogenous opioid peptides and exogenously administered opioid analgesics, on a variety of physiological functions associated with motility, secretion and visceral pain. The studies reviewed or reported here describe a range of in vivo activities of opioid receptor antagonists upon GI function in rodents, focusing on mu receptors. Naloxone, and the peripherally acting mu-opioid receptor antagonists alvimopan and methylnaltrexone, reverse morphine-induced inhibition of GI transit in mice and rats, and morphine- or loperamide-induced inhibition of castor oil-induced diarrhoea in mice. At doses producing maximal reversal of morphine-induced effects upon GI transit, only the central nervous system (CNS) penetrant antagonist naloxone was able to reverse morphine-induced analgesia. Both central and peripheral opioid antagonists may affect GI function and/or visceromotor sensitivity in the absence of exogenous opioid analgesics, suggesting a constitutive role for endogenous opioid peptides in the control of GI physiology. Furthermore, in contrast to naloxone, alvimopan does not produce hypersensitivity to the visceromotor response induced by nociceptive levels of colorectal distension in a rodent model of post-inflammatory colonic hypersensitivity, suggesting that in the periphery endogenous mu-opioid receptor-mediated mechanisms do not regulate colonic sensitivity. The data support the hypothesis that peripherally acting opioid antagonists may be able to selectively block opioid receptors in the GI tract, thereby preserving normal GI physiology, while not blocking the effects of endogenous opioid peptides or exogenous opioid analgesics in the CNS. These findings suggest that the primary sites of action of mu-opioid agonists with respect to inhibition of GI function are in the periphery, whereas analgesic activity resides primarily in the CNS.
Selective delta opioid receptor agonists are promising potential therapeutic agents for the treatment of various types of pain conditions. A spirocyclic derivative was identified as a promising hit through screening. Subsequent lead optimization identified compound 20 (ADL5859) as a potent, selective, and orally bioavailable delta agonist. Compound 20 was selected as a clinical candidate for the treatment of pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.