IL (interleukin)-22 is an IL-10-related cytokine; its main biological activity known thus far is the induction of acute phase reactants in liver and pancreas. IL-22 signals through a receptor that is composed of two chains from the class II cytokine receptor family: IL-22R (also called ZcytoR11/CRF2-9) and IL-10R (CRF2-4), which is also involved in IL-10 signaling. In this report, we analyzed the signal transduction pathways activated in response to IL-22 in a rat hepatoma cell line, H4IIE. We found that IL-22 induces activation of JAK1 and Tyk2 but not JAK2, as well as phosphorylation of STAT1, STAT3, and STAT5 on tyrosine residues, extending the similarities between IL-22 and IL-10. However our results unraveled some differences between IL-22 and IL-10 signaling. Using antibodies specific for the phosphorylated form of MEK1/2, ERK1/2, p90RSK, JNK, and p38 kinase, we showed that IL-22 activates the three major MAPK pathways. IL-22 also induced serine phosphorylation of STAT3 on Ser 727 . This effect, which is not shared with IL-10, was only marginally affected by MEK1/2 inhibitors, indicating that other pathways might be involved. Finally, by overexpressing a STAT3 S727A mutant, we showed that serine phosphorylation is required to achieve maximum transactivation of a STAT responsive promoter upon IL-22 stimulation.
IL-10-related cytokines include IL-20 and IL-22, which induce, respectively, keratinocyte proliferation and acute phase production by hepatocytes, as well as IL-19, melanoma differentiation-associated gene 7, and AK155, three cytokines for which no activity nor receptor complex has been described thus far. Here, we show that mda-7 and IL-19 bind to the previously described IL-20R complex, composed by cytokine receptor family 2–8/IL-20Rα and DIRS1/IL-20Rβ (type I IL-20R). In addition, mda-7 and IL-20, but not IL-19, bind to another receptor complex, composed by IL-22R and DIRS1/IL20Rβ (type II IL-20R). In both cases, binding of the ligands results in STAT3 phosphorylation and activation of a minimal promoter including STAT-binding sites. Taken together, these results demonstrate that: 1) IL-20 induces STAT activation through IL-20R complexes of two types; 2) mda-7 and IL-20 redundantly signal through both complexes; and 3) IL-19 signals only through the type I IL-20R complex.
We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals, hydrophobic, and electrostatic interactions. From the protein viewpoint, hydrophilic amino acids are over-represented in the interaction databases: Positively charged amino acids mainly contact nucleic acid phosphate groups but can also interact with base edges. From the nucleotide point of view, DNA and RNA behave differently: Most protein-DNA interactions involve phosphate atoms, while protein-RNA interactions involve more frequently base edge and ribose atoms. The increased participation of DNA phosphate involves H-bonds rather than salt bridges. A statistical analysis was performed to find the occurrence of amino acid-nucleotide pairs most different from chance. These pairs were analyzed individually. Finally, we studied the conformation of DNA in the interaction sites. Despite the prevalence of B-DNA in the database, our results suggest that A-DNA is favored in the interaction sites.
The class II cytokine receptor family includes the receptors for IFN-αβ, IFN-γ, IL-10, and IL-10-related T cell-derived inducible factor/IL-22. By screening genomic DNA databases, we identified a gene encoding a protein of 231 aa, showing 33 and 34% amino acid identity with the extracellular domains of the IL-22 receptor and of the IL-20R/cytokine receptor family 2-8, respectively, but lacking the transmembrane and cytoplasmic domains. A lower but significant sequence identity was found with other members of this family such as the IL-10R (29%), cytokine receptor family 2-4/IL-10Rβ (30%), tissue factor (26%), and the four IFN receptor chains (23–25%). This gene is located on chromosome 6q24, at 35 kb from the IFNGR1 gene, and is expressed in various tissues with maximal expression in breast, lungs, and colon. The recombinant protein was found to bind IL-10-related T cell-derived inducible factor/IL-22, and to inhibit the activity of this cytokine on hepatocytes and intestinal epithelial cells. We propose to name this natural cytokine antagonist IL-22BP for IL-22 binding protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.