The transmembrane (TM) domains of viral fusion proteins are required for fusion, but their precise role is unknown. G protein, the fusion protein of vesicular stomatitis virus, was previously shown to lose syncytia-forming ability if six residues (GLIIGL) were deleted from its TM domain. The 20-residue TM domain of wild-type (TM20) G protein was thus changed into a TM domain of 14 residues (TM14). To assess possible sequence specificity for this loss of function, the two Gly residues in TM20 were replaced with either Ala or Leu. Both mutations resulted in complete loss of fusion activity, as measured by fusion-dependent reporter gene transfer. Single substitutions decreased activity by about half. TM14 was weakly active (15%) but reintroduction of a Gly residue into TM14 by a single Ile 3 Gly substitution increased activity to 80%. All mutants retained normal hemifusion activity, i.e., lipid mixing between the outer leaflets of the reacting membranes. Thus, at least one TM Gly residue is required for a late step in fusion mediated by G protein. Gly residues were significantly (2.6-fold; P ؍ 0.004) more abundant in the TM domains of viral fusion proteins than in those of nonfusion proteins and were distributed differently within the TM domain. Thus, Gly residues in the TM domain of other viral fusion proteins may also prove to be important for fusion activity.
The phosphoprotein (P) of vesicular stomatitis virus was previously shown to assemble into a homomultimer upon phosphorylation by casein kinase II. It thus acquired transcriptional activity, including the ability to bind to the other two transcriptional components, the polymerase L and the N-RNA template. This multimer has now been found to be a trimer using a His-tag dilution method. Trimer stability was assessed using a variation of this method, by measuring the rate of exchange of monomers between preformed tagged and untagged trimers at different values of pH and ionic strength. Exchange rates increased with increasing ionic strength and were similar at pH 6, 8, and 10, but the trimer was completely dissociated at pH 4. This suggests that the trimer is stabilized by electrostatic interactions, probably involving carboxylate and guanidino groups. Addition of viral L protein stabilized the P trimers, completely preventing subunit exchange under transcription conditions. The association constants (Kass) for trimerization of partially active D and A substitution mutants were also determined by His-tag dilution and found to correlate well with transcriptional activity, further confirming that the active species is the trimer. Circular dichroism spectra were identical for phosphorylated and unphosphorylated wild-type P protein and for D and A mutants known to be predominantly trimeric and monomeric, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.