Neural networks, as powerful tools for data mining and knowledge engineering, can learn from data to build feature-based classifiers and nonlinear predictive models. Training neural networks involves the optimization of nonconvex objective functions, and usually, the learning process is costly and infeasible for applications associated with data streams. A possible, albeit counterintuitive, alternative is to randomly assign a subset of the networks' weights so that the resulting optimization task can be formulated as a linear least-squares problem. This methodology can be applied to both feedforward and recurrent networks, and similar techniques can be used to approximate kernel functions. Many experimental results indicate that such randomized models can reach sound performance compared to fully adaptable ones, with a number of favorable benefits, including (1) simplicity of implementation, (2) faster learning with less intervention from human beings, and (3) possibility of leveraging overall linear regression and classification algorithms (e.g., ℓ 1 norm minimization for obtaining sparse formulations). This class of neural networks attractive and valuable to the data mining community, particularly for handling large scale data mining in real-time. However, the literature in the field is extremely vast and fragmented, with many results being reintroduced multiple times under different names. This overview aims to provide a self-contained, uniform introduction to the different ways in which randomization can be applied to the design of neural networks and kernel functions. A clear exposition of the basic framework underlying all these approaches helps to clarify innovative lines of research, open problems, and most importantly, foster the exchanges of well-known results throughout different communities.
In the smart grid paradigm, growing integration of large-scale intermittent renewable energies has introduced significant uncertainties to the operations of an electric power system. This makes real-time dynamic security assessment (DSA) a necessity to enable enhanced situational-awareness against the risk of blackouts. Conventional DSA methods are mainly based on the time-domain simulation, which are insufficiently fast and knowledge-poor. In recent years, the intelligent system (IS) strategy has been identified as a promising approach to facilitate real-time DSA. While previous works mainly concentrate on the rotor angle stability, this paper focuses on another yet increasingly important dynamic insecurity phenomenon-the short-term voltage instability, which involves fast and complex load dynamics. The problem is modeled as a classification subproblem for transient voltage collapse and a prediction subproblem for unacceptable dynamic voltage deviation. A hierarchical IS is developed to address the two subproblems sequentially. The IS is based on ensemble learning of random-weights neural networks and is implemented in an offline training, a real-time application, and an online updating pattern. The simulation results on the New England 39-bus system verify its superiority in both learning speed and accuracy over some state-of-the-art learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.