Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pick up heterogeneous information along the SDP. Our proposed model has several distinct features: (1) The shortest dependency paths retain most relevant information (to relation classification), while eliminating irrelevant words in the sentence. (2) The multichannel LSTM networks allow effective information integration from heterogeneous sources over the dependency paths. (3) A customized dropout strategy regularizes the neural network to alleviate overfitting. We test our model on the SemEval 2010 relation classification task, and achieve an F 1 -score of 83.7%, higher than competing methods in the literature.
In this paper, we propose the TBCNNpair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentencelevel semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms existing sentence encoding-based approaches by a large margin.
Transfer learning is aimed to make use of valuable knowledge in a source domain to help model performance in a target domain. It is particularly important to neural networks, which are very likely to be overfitting. In some fields like image processing, many studies have shown the effectiveness of neural network-based transfer learning. For neural NLP, however, existing studies have only casually applied transfer learning, and conclusions are inconsistent. In this paper, we conduct systematic case studies and provide an illuminating picture on the transferability of neural networks in NLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.