The potential impacts of climate change on current livestock systems worldwide are a major concern, and yet the topic is covered to a limited extent in global reports such as the ones produced by the Intergovernmental Panel on Climate Change. In this article, we review the risk of climate-related impacts along the land-based livestock food supply chain. Although a quantification of the net impacts of climate change on the livestock sector is beyond the reach of our current understanding, there is strong evidence that there will be impacts throughout the supply chain, from farm production to processing operations, storage, transport, retailing and human consumption. The risks of climate-related impacts are highly context-specific but expected to be higher in environments that are already hot and have limited socio-economic and institutional resources for adaptation. Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems to climatic changes over time. Consequently, adaptation choices will need to account for a wide range of possible futures, including those with low probability but large consequences.
Livestock provides an important source of income and nourishment for around one billion rural households worldwide. Demand for livestock food products is increasing, especially in developing countries, and there are opportunities to increase production to meet local demand and increase farm incomes. Estimating the scale of livestock yield gaps and better understanding factors limiting current production will help to define the technological and investment needs in each livestock sector. The aim of this paper is to quantify livestock yield gaps and evaluate opportunities to increase dairy production in Sub-Saharan Africa and South Asia, using case studies from Ethiopia and India. We combined three different methods in our approach. Benchmarking and a frontier analysis were used to estimate attainable milk yields based on survey data. Household modelling was then used to simulate the effects of various interventions on dairy production and income. We tested interventions based on improved livestock nutrition and genetics in the extensive lowland grazing zone and highland mixed crop-livestock zones of Ethiopia, and the intensive irrigated and rainfed zones of India. Our analyses indicate that there are considerable yield gaps for dairy production in both countries, and opportunities to increase production using the interventions tested. In some cases, combined interventions could increase production past currently attainable livestock yields.
Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been—somewhat myopically—on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co‐benefits and trade‐offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low‐ and middle‐income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple‐bottom line benefit with medium–high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co‐benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems‐based, multi‐metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems‐aligned ‘socio‐economic planetary boundaries’ offer useful starting points that may uncover leverage points and cross‐scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.