Summary DNA methylation is a major epigenetic mechanism for gene silencing. While methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here we show that either knockout or catalytic inactivation of the DNA repair enzyme Thymine DNA Glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific, developmentally- and hormonally-regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage-response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair.
Studies utilizing experimental animals, epidemiological approaches, cellular models, and clinical trials all provide evidence that retinoic acid and some of its synthetic derivatives (retinoids) are useful pharmacological agents in cancer therapy and prevention. In this chapter, we first review the current knowledge of retinoic acid receptors (RARs) and their role in mediating the actions of retinoic acid. We then focus on a discussion of RARalpha and acute promyelocytic leukemia followed by a discussion of the role of RARs, in particular RARbeta expression, in other cancer types. Loss of normal RAR function in the presence of physiological levels of RA (either due to alterations in the protein structure or level of expression) is associated with a variety of different cancers. In some cases treatment with pharmacological doses of RA can be effective.
Plasma transthyretin (TTR, formerly called prealbumin) is a 55-kd protein that participates in the plasma transport of both thyroxine and retinol (vitamin A). TTR concentrations are disproportionately high in human ventricular CSF, suggesting that TTR is either selectively transported across or synthesized de novo within the blood-CSF barrier. To address this question, we adopted a molecular genetic approach; after isolating a cDNA clone encoding human TTR, we previously demonstrated specific TTR messenger RNA (mRNA) synthesis in rat choroid plexus. We have now extended these investigations to the human brain. Northern analysis of postmortem brain homogenates revealed abundant TTR mRNA in choroid plexus, but not in cerebellum or cerebral cortex. Choroid plexus mRNA was readily translated into TTR preprotein in an in vitro translation system. An immunocytochemical survey of human postmortem brain sections revealed the presence of TTR protein specifically and uniquely in the cytoplasm of choroid plexus epithelial cells; these results were corroborated at the mRNA level by an extensive survey of whole rat-brain sections by in situ hybridization. Therefore, within the mammalian CNS, TTR is the first known protein synthesized solely by the choroid plexus, suggesting a special role for TTR in the brain or CSF. Whether this function differs from its established plasma transport functions is presently unknown.
Retinoids have great promise in the area of cancer therapy and chemoprevention. Although some tumor cells are sensitive to the growth inhibitory effect of alltrans-retinoic acid (ATRA), many ovarian tumor cells are not. 6-((1-Admantyl)-4-hydroxyphenyl)-2-naphthalenecarboxylic acid (CD437) is a conformationally restricted synthetic retinoid that induces growth arrest and apoptosis in both ATRA-sensitive and ATRA-resistant ovarian tumor cell lines. To better understand the mechanism by which CD437 induces apoptosis in ovarian tumor cell lines, we prepared a cell line, CA-CD437R, from the ATRA-sensitive ovarian cell line, CA-OV-3, which was resistant to CD437. We found that the CD437-resistant cell line was also resistant to the induction of apoptosis by tumor necrosis factor-␣ but not resistant to the induction of apoptosis by another synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. We also show that this cell line remains ATRA-sensitive and exhibits no deficiencies in RAR function. Analysis of this CD437-resistant cell line suggests that the pathway for induction of apoptosis by CD437 is similar to the pathway utilized by tumor necrosis factor-␣ and different from the pathway induced by the synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. The CA-CD437R cell line is a valuable tool, permitting us to further elucidate the molecular events that mediate apoptosis induced by CD437 and other synthetic retinoids. Results of experiments utilizing this cell line suggest that the alteration responsible for resistance of CA-CD437R cells to CD437 induced event maps after the activation of p38 and TR3 expression, prior to mitochondrial depolarization, subsequent release of cytochrome c and activation of caspase-9 and caspase-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.