Public buildings that house large populations are easy targets for terrorist attacks, the primary issue of architectural blast-resistant design is how to get blast loads on the surface of structures, and the shapes of blast waves and buildings both have important effects on it. In this paper, experiments and numerical simulations were carried out on blast loads on the surface of the cylindrical shell. blast loads, detonation products, and blast waves were well recorded and simulated, blast loads at the edge of cylindrical shells were attenuated by about 75%, and vortex rings were accidentally photographed nearby. blast loads are much affected by the location of the detonation point, charge shape, and charge size. The original shape of structures rather than deformation determines the distribution of blast loads, the air viscosity also needs to be scaled when using a scaled model to test blast loads. Experimental and simulation methods can offer a reference for building a standard database of blast loads.
Cylindrical shells are widely used in public buildings and military protection fields, and it has a high risk of terrorist attacks and military attacks, it is of great social benefit to carry out the anti-blast design of cylindrical shells, which needs to consider building shape and the shape of blast waves. In this paper, cylindrical charges in five directions were detonated on the outer ground of the scaled cylindrical shell, blast loads of the cylindrical shell were measured and blast waves were photographed. The variation of blast load is analyzed by combining the test and simulation results, the difference in peak overpressure of the blast waves on the end face between five orientations is nearly twice. The blast loads in the axial direction of cylindrical charges have a secondary peak phenomenon, and the blast loads between the axial direction and radial direction of cylindrical charges change abruptly at a specific angle. The experimental and simulation methods provide a reference for establishing a blast load database of typical buildings.
Cylindrical shells are widely used in public buildings and military protection fields, and it has a high risk of terrorist attacks and military attacks, it is of great social benefit to carry out the anti-blast design of cylindrical shells, which needs to consider building shape and the shape of blast waves. In this paper, cylindrical charges in 5 directions were detonated on the outer ground of the scaled cylindrical shell, blast loads of the cylindrical shell were measured and blast waves were photographed. The variation of blast load is analyzed by combining the test and simulation results, the difference in peak overpressure of the blast waves on the end face between five orientations is nearly twice. The blast loads in the axial direction of cylindrical charges have a secondary peak phenomenon, and the blast loads between the axial direction and radial direction of cylindrical charges change abruptly at a specific angle. The experimental and simulation methods provide a reference for establishing a blast load database of typical buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.