Highly sensitive surface-enhanced Raman scattering (SERS) detection was achieved on plasmon-free TiO2 photonic artificial microarray, which can be quickly recovered under simulated solar light irradiation and repeatedly used. The sensitive detection performance is attributed to the enhanced matter-light interaction through repeated and multiple light scattering in photonic microarray. Moreover, the SERS sensitivity is unprecedentedly found to be dependent on the different light-coupling performance of microarray with various photonic band gaps, where microarray with band gap center near to laser wavelength shows a lower SERS signal due to depressed light propagation, while those with band gap edges near to laser wavelength show higher sensitivity due to slow light effect.
Two-dimensional black phosphorus configured field-effect transistor devices generally show a hole-dominated ambipolar transport characteristic, thereby limiting its applications in complementary electronics. Herein, we demonstrate an effective surface functionalization scheme on few-layer black phosphorus, through in situ surface modification with potassium, with a view toward high performance complementary device applications. Potassium induces a giant electron doping effect on black phosphorus along with a clear bandgap reduction, which is further corroborated by in situ photoelectron spectroscopy characterizations. The electron mobility of black phosphorus is significantly enhanced to 262 (377) cm V s by over 1 order of magnitude after potassium modification for two-terminal (four-terminal) measurements. Using lithography technique, a spatially controlled potassium doping technique is developed to establish high-performance complementary devices on a single black phosphorus nanosheet, for example, the p-n homojunction-based diode achieves a near-unity ideality factor of 1.007 with an on/off ratio of ∼10. Our findings coupled with the tunable nature of in situ modification scheme enable black phosphorus as a promising candidate for further complementary electronics.
Near infrared (NIR) photodetectors based on 2D materials are widely studied for their potential application in next generation sensing, thermal imaging, and optical communication. Construction of van der Waals (vdWs) heterostructure provides a tremendous degree of freedom to combine and extend the features of 2D materials, opening up new functionalities on photonic and optoelectronic devices. Herein, a type-II InSe/PdSe 2 vdWs heterostructure with strong interlayer transition for NIR photodetection is demonstrated. Strong interlayer transition between InSe and PdSe 2 is predicted via density functional theory calculation and confirmed by photoluminance spectroscopy and Kelvin probe force microscopy. The heterostructure exhibits highly sensitive photodetection in NIR region up to 1650 nm. The photoresponsivity, detectivity, and external quantum efficiency at this wavelength respectively reaches up to 58.8 A W −1 , 1 × 10 10 Jones, and 4660%. The results suggest that the construction of vdWs heterostructure with strong interlayer transition is a promising strategy for infrared photodetection, and this work paves the way to developing high-performance optoelectronic devices based on 2D vdWs heterostructures.
Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm × 50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm 2 V −1 s −1 . This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.