This technical report extends our work presented in [9] with more experiments. In [9], we tackle long-term video understanding, which requires reasoning from current and past or future observations and raises several fundamental questions. How should temporal or sequential relationships be modelled? What temporal extent of information and context needs to be processed? At what temporal scale should they be derived? [9] addresses these questions with a flexible multi-granular temporal aggregation framework. In this report, we conduct further experiments with this framework on different tasks and a new dataset, EPIC-KITCHENS-100. Our code and models can be found in https://github.com/dibschat/tempAgg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.