<abstract><p>Cancer is a disease that causes abnormal cell formation and spreads throughout the body, causing harm to other organs. Breast cancer is the most common kind among many of cancers worldwide. Breast cancer affects women due to hormonal changes or genetic mutations in DNA. Breast cancer is one of the primary causes of cancer worldwide and the second biggest cause of cancer-related deaths in women. Metastasis development is primarily linked to mortality. Therefore, it is crucial for public health that the mechanisms involved in metastasis formation are identified. Pollution and the chemical environment are among the risk factors that are being indicated as impacting the signaling pathways involved in the construction and growth of metastatic tumor cells. Due to the high risk of mortality of breast cancer, breast cancer is potentially fatal, more research is required to tackle the deadliest disease. We considered different drug structures as chemical graphs in this research and computed the partition dimension. This can help to understand the chemical structure of various cancer drugs and develop formulation more efficiently.</p></abstract>
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
In this paper, a high zero-sum weighting is applied to evaluate the nullity of a dendrimer graph for some special graphs such as cycles, paths, complete graphs, complete bipartite graphs and star graphs.Finally, we introduce and prove a sharp lower and a sharp upper bound for the nullity of the coalescence graph of two graphs.
Two connected labelled graphs H 1 and H 2 of nullity one, with identical one-vertex deleted subgraphs H 1 − z 1 and H 2 − z 2 and having a common eigenvector in the nullspace of their 0-1 adjacency matrix, can be overlaid to produce the superimposition Z. The graph Z is H 1 + z 2 and also H 2 + z 1 whereas Z + e is obtained from Z by adding the edge {z 1 , z 2 }. We show that the nullity of Z cannot take all the values allowed by interlacing. We propose to classify graphs with two chosen vertices according to the type of the vertices occurring by using a 3-type-code. Out of the 27 values it can take, only 9 are hypothetically possible for Z, 8 of which are known to exist. Moreover, the SSP molecular model predicts conduction or insulation at the Fermi level of energy for 11 possible types of devices consisting of a molecule and two prescribed connecting atoms over a small bias voltage. All 11 molecular device types are realizable for general molecules, but the structure of Z and of Z + e restricts the number to just 5.
A branch of graph theory that makes use of a molecular graph is called chemical graph theory. Chemical graph theory is used to depict a chemical molecule. A graph is connected if there is an edge between every pair of vertices. A topological index is a numerical value related to the chemical structure that claims to show a relationship between chemical structure and various physicochemical attributes, chemical reactivity, or, you could say, biological activity. In this article, we examined the topological properties of a planar octahedron network of m dimensions and computed the total eccentricity, average eccentricity, Zagreb eccentricity, geometric arithmetic eccentricity, and atom bond connectivity eccentricity indices, which are used to determine the distance between the vertices of a planar octahedron network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.