Carotenogenesis has been extensively studied in fruits and flower petals. Transcriptional regulation is thought to be the major factor in carotenoid accumulation in these organs. However, little is known about regulation in root organs. The root carotenoid content of carrot germplasm varies widely. The present study was conducted to investigate transcriptional regulation of carotenoid biosynthesis genes in relation to carotenoid accumulation during early carrot root development and up to 3 months after sowing. HPLC carotenoid content analysis and quantitative RT-PCR were compared to quantify the expression of eight genes encoding carotenoid biosynthesis enzymes during the development of white, yellow, orange, and red carrot roots. The genes chosen encode phytoene synthase (PSY1 and PSY2), phytoene desaturase (PDS), zeta-carotene desaturase (ZDS1 and ZDS2), lycopene epsilon-cyclase (LCYE), lycopene beta-cyclase (LCYB1), and zeaxanthin epoxidase (ZEP). All eight genes were expressed in the white cultivar even though it did not contain carotenoids. By contrast with fruit maturation, the expression of carotenogenic genes began during the early stages of development and then progressively increased for most of these genes during root development as the total carotenoid level increased in coloured carrots. The high expression of genes encoding LCYE and ZDS noted in yellow and red cultivars, respectively, might be consistent with the accumulation of lutein and lycopene, respectively. The results showed that the accumulation of total carotenoids during development and the accumulation of major carotenoids in the red and yellow cultivars might partially be explained by the transcriptional level of genes directing the carotenoid biosynthesis pathway.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 x G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.
According to the history of the cultivated carrot, root colour can be considered as a structural factor of carrot germplasm. Therefore, molecular variations of carotenoid biosynthesis genes, these being involved in colour traits, represent a good putative source of polymorphism related to diversity structure. Seven candidate genes involved in the carotenoid biosynthesis pathway have been analysed from a sample of 48 individual plants, each one from a different cultivar of carrot (Daucus carota L. ssp. sativus). The cultivars were chosen to represent a large diversity and a wide range of root colour. A high single nucleotide polymorphism (SNP) frequency of 1 SNP per 22 bp (mean pi (sil) = 0.020) was found on average within these genes. The analysis of genetic structure from carotenoid biosynthesis gene sequences and 17 putatively neutral microsatellites showed moderate genetic differentiation between cultivars originating from the West and the East (F (ST) = 0.072), this being consistent with breeding history, but not previously evidenced by molecular tools. Surprisingly, carotenoid biosynthesis genes did not exhibit decay of LD (mean r (2) = 0.635) within the 700-1,000 bp analysed, even though a fast decay level of LD is expected in outcrossing species. The high level of intralocus LD found for carotenoid biosynthesis genes implies that candidate-gene association mapping for carrot root colour should be useful to validate gene function, but may be unable to identify precisely the causative variations involved in trait determinism. Finally this study affords the first molecular evidence of a genetic structure in cultivated carrot germplasm related to phylogeography.
We have constructed a common bean genomic library enriched for microsatellite motifs (ATA), (CA), (CAC) and (GA). After screening, 60% of the clones selected from the library enriched for the (ATA) repeat contained microsatellites versus 21% of the clones from the library enriched for (GA) (CA) and (CAC) repeats. Fifteen primer pairs have been developed allowing for the amplification of SSR loci. We have evaluated the genetic diversity of these loci between 45 different bean lines belonging to nine various quality types. A total of 81 alleles were detected at the 15 microsatellite loci with an average of 5.3 alleles per locus. We have investigated the origin of allelic size polymorphism at the locus PvATA20 in which the number of repeats ranges from 24 to 85. We have related these large differences in repeat number to unequal crossing-over between repeated DNA regions. The diversity analysis revealed contrasted levels of variability according to the bean type. The lower level was evidenced for the very fine French bean, showing the effect of breeders intensive selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.