The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive’s position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive’s tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement.
Eye-tracking research in infants and older children has gained a lot of momentum over the last decades. Although eye-tracking research in these participant groups has become easier with the advance of the remote eye-tracker, this often comes at the cost of poorer data quality than in research with well-trained adults (Hessels, Andersson, Hooge, Nyström, & Kemner Infancy, 20, 601–633, 2015; Wass, Forssman, & Leppänen Infancy, 19, 427–460, 2014). Current fixation detection algorithms are not built for data from infants and young children. As a result, some researchers have even turned to hand correction of fixation detections (Saez de Urabain, Johnson, & Smith Behavior Research Methods, 47, 53–72, 2015). Here we introduce a fixation detection algorithm—identification by two-means clustering (I2MC)—built specifically for data across a wide range of noise levels and when periods of data loss may occur. We evaluated the I2MC algorithm against seven state-of-the-art event detection algorithms, and report that the I2MC algorithm’s output is the most robust to high noise and data loss levels. The algorithm is automatic, works offline, and is suitable for eye-tracking data recorded with remote or tower-mounted eye-trackers using static stimuli. In addition to application of the I2MC algorithm in eye-tracking research with infants, school children, and certain patient groups, the I2MC algorithm also may be useful when the noise and data loss levels are markedly different between trials, participants, or time points (e.g., longitudinal research).
The marketing materials of remote eye-trackers suggest that data quality is invariant to the position and orientation of the participant as long as the eyes of the participant are within the eye-tracker’s headbox, the area where tracking is possible. As such, remote eye-trackers are marketed as allowing the reliable recording of gaze from participant groups that cannot be restrained, such as infants, schoolchildren and patients with muscular or brain disorders. Practical experience and previous research, however, tells us that eye-tracking data quality, e.g. the accuracy of the recorded gaze position and the amount of data loss, deteriorates (compared to well-trained participants in chinrests) when the participant is unrestrained and assumes a non-optimal pose in front of the eye-tracker. How then can researchers working with unrestrained participants choose an eye-tracker? Here we investigated the performance of five popular remote eye-trackers from EyeTribe, SMI, SR Research, and Tobii in a series of tasks where participants took on non-optimal poses. We report that the tested systems varied in the amount of data loss and systematic offsets observed during our tasks. The EyeLink and EyeTribe in particular had large problems. Furthermore, the Tobii eye-trackers reported data for two eyes when only one eye was visible to the eye-tracker. This study provides practical insight into how popular remote eye-trackers perform when recording from unrestrained participants. It furthermore provides a testing method for evaluating whether a tracker is suitable for studying a certain target population, and that manufacturers can use during the development of new eye-trackers.
Eye movements have been extensively studied in a wide range of research fields. While new methods such as mobile eye tracking and eye tracking in virtual/augmented realities are emerging quickly, the eye-movement terminology has scarcely been revised. We assert that this may cause confusion about two of the main concepts: fixations and saccades. In this study, we assessed the definitions of fixations and saccades held in the eye-movement field, by surveying 124 eye-movement researchers. These eye-movement researchers held a variety of definitions of fixations and saccades, of which the breadth seems even wider than what is reported in the literature. Moreover, these definitions did not seem to be related to researcher background or experience. We urge researchers to make their definitions more explicit by specifying all the relevant components of the eye movement under investigation: (i) the oculomotor component: e.g. whether the eye moves slow or fast; (ii) the functional component: what purposes does the eye movement (or lack thereof) serve; (iii) the coordinate system used: relative to what does the eye move; (iv) the computational definition: how is the event represented in the eye-tracker signal. This should enable eye-movement researchers from different fields to have a discussion without misunderstandings.
Event detection is a challenging stage in eye movement data analysis. A major drawback of current event detection methods is that parameters have to be adjusted based on eye movement data quality. Here we show that a fully automated classification of raw gaze samples as belonging to fixations, saccades, or other oculomotor events can be achieved using a machine-learning approach. Any already manually or algorithmically detected events can be used to train a classifier to produce similar classification of other data without the need for a user to set parameters. In this study, we explore the application of random forest machine-learning technique for the detection of fixations, saccades, and post-saccadic oscillations (PSOs). In an effort to show practical utility of the proposed method to the applications that employ eye movement classification algorithms, we provide an example where the method is employed in an eye movement-driven biometric application. We conclude that machine-learning techniques lead to superior detection compared to current state-of-the-art event detection algorithms and can reach the performance of manual coding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.