Event detection is used to classify recorded gaze points into periods of fixation, saccade, smooth pursuit, blink, and noise. Although there is an overall consensus that current algorithms for event detection have serious flaws and that a de facto standard for event detection does not exist, surprisingly little work has been done to remedy this problem. We suggest a new velocity-based algorithm that takes several of the previously known limitations into account. Most important, the new algorithm identifies so-called glissades, a wobbling movement at the end of many saccades, as a separate class of eye movements. Part of the solution involves designing an adaptive velocity threshold that makes the event detection less sensitive to variations in noise level and the algorithm settings-free for the user. We demonstrate the performance of the new algorithm on eye movements recorded during reading and scene perception and compare it with two of the most commonly used algorithms today. Results show that, unlike the currently used algorithms, fixations, saccades, and glissades are robustly identified by the new algorithm. Using this algorithm, we found that glissades occur in about half of the saccades, during both reading and scene perception, and that they have an average duration close to 24 msec. Due to the high prevalence and long durations of glissades, we argue that researchers must actively choose whether to assign the glissades to saccades or fixations; the choice affects dependent variables such as fixation and saccade duration significantly. Current algorithms do not offer this choice, and their assignments of each glissade are largely arbitrary.
Almost all eye-movement researchers use algorithms to parse raw data and detect distinct types of eye movement events, such as fixations, saccades, and pursuit, and then base their results on these. Surprisingly, these algorithms are rarely evaluated. We evaluated the classifications of ten eyemovement event detection algorithms, on data from an SMI HiSpeed 1250 system, and compared them to manual ratings of two human experts. The evaluation focused on fixations, saccades, and post-saccadic oscillations. The evaluation used both event duration parameters, and sample-by-sample comparisons to rank the algorithms. The resulting event durations varied substantially as a function of what algorithm was used. This evaluation differed from previous evaluations by considering a relatively large set of algorithms, multiple events, and data from both static and dynamic stimuli. The main conclusion is that current detectors of only fixations and saccades work reasonably well for static stimuli, but barely better than chance for dynamic stimuli. Differing results across evaluation methods make it difficult to select one winner for fixation detection. For saccade detection, however, the algorithm by Larsson, Nyström and Stridh (IEEE Transaction on Biomedical Engineering, 60(9): [2484][2485][2486][2487][2488][2489][2490][2491][2492][2493]2013) outperforms all algorithms in data from both static and dynamic stimuli. The data also show how improperly selected algorithms applied to dynamic data misestimate fixation and saccade properties.
Recording eye movement data with high quality is often a prerequisite for producing valid and replicable results and for drawing well-founded conclusions about the oculomotor system. Today, many aspects of data quality are often informally discussed among researchers but are very seldom measured, quantified, and reported. Here we systematically investigated how the calibration method, aspects of participants' eye physiologies, the influences of recording time and gaze direction, and the experience of operators affect the quality of data recorded with a common tower-mounted, video-based eyetracker. We quantified accuracy, precision, and the amount of valid data, and found an increase in data quality when the participant indicated that he or she was looking at a calibration target, as compared to leaving this decision to the operator or the eyetracker software. Moreover, our results provide statistical evidence of how factors such as glasses, contact lenses, eye color, eyelashes, and mascara influence data quality. This method and the results provide eye movement researchers with an understanding of what is required to record high-quality data, as well as providing manufacturers with the knowledge to build better eyetrackers.
Data quality is essential to the validity of research results and to the quality of gaze interaction. We argue that the lack of standard measures for eye data quality makes several aspects of manufacturing and using eye trackers, as well as researching eye movements and vision, more difficult than necessary. Uncertainty regarding the comparability of research results is a considerable impediment to progress in the field. In this paper, we illustrate why data quality matters and review previous work on how eye data quality has been measured and reported. The goal is to achieve a common understanding of what data quality is and how it can be defined, measured, evaluated, and reported. 1 1 We thank the members of the COGAIN Technical Committee (see www.cogain.org/EyeDataQualityTC) for the standardisation of eye data quality for their ongoing participation and comments to this text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.