Almost all eye-movement researchers use algorithms to parse raw data and detect distinct types of eye movement events, such as fixations, saccades, and pursuit, and then base their results on these. Surprisingly, these algorithms are rarely evaluated. We evaluated the classifications of ten eyemovement event detection algorithms, on data from an SMI HiSpeed 1250 system, and compared them to manual ratings of two human experts. The evaluation focused on fixations, saccades, and post-saccadic oscillations. The evaluation used both event duration parameters, and sample-by-sample comparisons to rank the algorithms. The resulting event durations varied substantially as a function of what algorithm was used. This evaluation differed from previous evaluations by considering a relatively large set of algorithms, multiple events, and data from both static and dynamic stimuli. The main conclusion is that current detectors of only fixations and saccades work reasonably well for static stimuli, but barely better than chance for dynamic stimuli. Differing results across evaluation methods make it difficult to select one winner for fixation detection. For saccade detection, however, the algorithm by Larsson, Nyström and Stridh (IEEE Transaction on Biomedical Engineering, 60(9): [2484][2485][2486][2487][2488][2489][2490][2491][2492][2493]2013) outperforms all algorithms in data from both static and dynamic stimuli. The data also show how improperly selected algorithms applied to dynamic data misestimate fixation and saccade properties.
Recording eye movement data with high quality is often a prerequisite for producing valid and replicable results and for drawing well-founded conclusions about the oculomotor system. Today, many aspects of data quality are often informally discussed among researchers but are very seldom measured, quantified, and reported. Here we systematically investigated how the calibration method, aspects of participants' eye physiologies, the influences of recording time and gaze direction, and the experience of operators affect the quality of data recorded with a common tower-mounted, video-based eyetracker. We quantified accuracy, precision, and the amount of valid data, and found an increase in data quality when the participant indicated that he or she was looking at a calibration target, as compared to leaving this decision to the operator or the eyetracker software. Moreover, our results provide statistical evidence of how factors such as glasses, contact lenses, eye color, eyelashes, and mascara influence data quality. This method and the results provide eye movement researchers with an understanding of what is required to record high-quality data, as well as providing manufacturers with the knowledge to build better eyetrackers.
Eye movements have been extensively studied in a wide range of research fields. While new methods such as mobile eye tracking and eye tracking in virtual/augmented realities are emerging quickly, the eye-movement terminology has scarcely been revised. We assert that this may cause confusion about two of the main concepts: fixations and saccades. In this study, we assessed the definitions of fixations and saccades held in the eye-movement field, by surveying 124 eye-movement researchers. These eye-movement researchers held a variety of definitions of fixations and saccades, of which the breadth seems even wider than what is reported in the literature. Moreover, these definitions did not seem to be related to researcher background or experience. We urge researchers to make their definitions more explicit by specifying all the relevant components of the eye movement under investigation: (i) the oculomotor component: e.g. whether the eye moves slow or fast; (ii) the functional component: what purposes does the eye movement (or lack thereof) serve; (iii) the coordinate system used: relative to what does the eye move; (iv) the computational definition: how is the event represented in the eye-tracker signal. This should enable eye-movement researchers from different fields to have a discussion without misunderstandings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.