Electrical Submersible Pumps reliability and run-life analysis has been extensively studied since its development. Current machine learning algorithms allow to correlate operational conditions to ESP run-life in order to generate predictions for active and new wells. Four machine learning models are compared to a linear proportional hazards model, used as a baseline for comparison purposes. Proper accuracy metrics for survival analysis problems are calculated on run-life predictions vs. actual values over training and validation data subsets. Results demonstrate that the baseline model is able to produce more consistent predictions with a slight reduction in its accuracy, compared to current machine learning models for small datasets. This study demonstrates that the quality of the date and it pre-processing supports the current shift from model-centric to data-centric approach to machine and deep learning problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.