Antibody-drug conjugates (ADCs) have been proven clinically to be more effective anti-cancer agents than native antibodies. However, the classical conjugation chemistries to prepare ADCs by targeting primary amines or hinge disulfides have a number of shortcomings including heterogeneous product profiles and linkage instability. We have developed a novel site-specific conjugation method by targeting the native glycosylation site on antibodies as an approach to address these limitations. The native glycans on Asn-297 of antibodies were enzymatically remodeled in vitro using galactosyl and sialyltransferases to introduce terminal sialic acids. Periodate oxidation of these sialic acids yielded aldehyde groups which were subsequently used to conjugate aminooxy functionalized cytotoxic agents via oxime ligation. The process has been successfully demonstrated with three antibodies including trastuzumab and two cytotoxic agents. Hydrophobic interaction chromatography and LC-MS analyses revealed the incorporation of ~1.6 cytotoxic agents per antibody molecule, approximating the number of sialic acid residues. These glyco-conjugated ADCs exhibited target-dependent antiproliferative activity toward antigen-positive tumor cells and significantly greater antitumor efficacy than naked antibody in a Her2-positive tumor xenograft model. These findings suggest that enzymatic remodeling combined with oxime ligation of the native glycans of antibodies offers an attractive approach to generate ADCs with well-defined product profiles. The site-specific conjugation approach presented here provides a viable alternative to other methods, which involve a need to either re-engineer the antibody sequence or develop a highly controlled chemical process to ensure reproducible drug loading.
PURPOSE Ivosidenib is an oral inhibitor of the mutant isocitrate dehydrogenase 1 (IDH1) enzyme, approved for treatment of IDH1-mutant (m IDH1) acute myeloid leukemia (AML). Preclinical work suggested that addition of azacitidine to ivosidenib enhances mIDH1 inhibition–related differentiation and apoptosis. PATIENTS AND METHODS This was an open-label, multicenter, phase Ib trial comprising dose-finding and expansion stages to evaluate safety and efficacy of combining oral ivosidenib 500 mg once daily continuously with subcutaneous azacitidine 75 mg/m2 on days 1-7 in 28-day cycles in patients with newly diagnosed m IDH1 AML ineligible for intensive induction chemotherapy (ClinicalTrials.gov identifier: NCT02677922 ). RESULTS Twenty-three patients received ivosidenib plus azacitidine (median age, 76 years; range, 61-88 years). Treatment-related grade ≥ 3 adverse events occurring in > 10% of patients were neutropenia (22%), anemia (13%), thrombocytopenia (13%), and electrocardiogram QT prolongation (13%). Adverse events of special interest included all-grade IDH differentiation syndrome (17%), all-grade electrocardiogram QT prolongation (26%), and grade ≥ 3 leukocytosis (9%). Median treatment duration was 15.1 months (range, 0.3-32.2 months); 10 patients remained on treatment as of February 19, 2019. The overall response rate was 78.3% (18/23 patients; 95% CI, 56.3% to 92.5%), and the complete remission rate was 60.9% (14/23 patients; 95% CI, 38.5% to 80.3%). With median follow-up of 16 months, median duration of response in responders had not been reached. The 12-month survival estimate was 82.0% (95% CI, 58.8% to 92.8%). m IDH1 clearance in bone marrow mononuclear cells by BEAMing (beads, emulsion, amplification, magnetics) digital polymerase chain reaction was seen in 10/14 patients (71.4%) achieving complete remission. CONCLUSION Ivosidenib plus azacitidine was well tolerated, with an expected safety profile consistent with monotherapy with each agent. Responses were deep and durable, with most complete responders achieving m IDH1 mutation clearance.
Endosialin/TEM1/CD248 is a cell surface protein expressed at high levels by the malignant cells of about 50% of sarcomas and neuroblastomas. The antibody-drug conjugate (ADC) anti-endosialin-MC-VC-PABC-MMAE was selectively cytotoxic to endosialin-positive cells in vitro and achieved profound and durable antitumor efficacy in preclinical human tumor xenograft models of endosialin-positive disease. MC-VC-PABC-MMAE was conjugated with anti-endosialin with 3-4 MMAE molecules per ADC. The anti-endosialin-MC-VC-PABC-MMAE conjugate was tested for activity in four human cell lines with varied endosialin levels. The HT-1080 fibrosarcoma cells do not express endosialin, A-673 Ewing sarcoma cells and SK-N-AS neuroblastoma cells are moderate expressers of endosialin, and SJSA-1 osteosarcoma cells express very high levels of endosialin. To determine whether endosialin expression was maintained in vivo, A-673 Ewing sarcoma, SK-N-AS neuroblastoma, and SJSA-1 osteosarcoma cells were grown as xenograft tumors in nude mice. The SK-N-AS neuroblastoma and the A-673 Ewing sarcoma lines were selected for in vivo efficacy testing of the anti-endosialin-MC-VC-PABC-MMAE conjugate. The treatment groups included a vehicle control, unconjugated anti-endosialin, an admix control consisting of anti-endosialin and a dose of free MMAE equivalent to the dose administered as the ADC, and the antiendosialin-MC-VC-PABC-MMAE conjugate. The unconjugated anti-endosialin had no antitumor activity and resulted in similar tumor growth as the vehicle control. The admix control produced a modest tumor growth delay. Administration of the anti-endosialin-MC-VC-PABC-MMAE conjugate resulted in a marked prolonged tumor response of both xenograts. These proof-of-concept results break new ground and open a promising drug discovery approach to these rare and neglected tumors.
A thymine cyclobutane dimer, site-specifically incorporated in a DNA duplex, is shown to be repaired upon photoexcitation (at 380 nm) of a naphthalene diimide intercalator (NDI), either bound noncovalently to the duplex or covalently appended to the C4 amine of a methylated cytosine base well separated from the thymine dimer. The repair of the thymine dimer is triggered by photooxidation either directly or by DNAmediated charge transport over a distance of ∼22 Å, the separation between NDI and the cyclobutane ring. Photooxidative repair with covalently and noncovalently bound NDI is demonstrated using HPLC under denaturing conditions, where the loss of the thymine dimer-containing strand and the formation of the repaired strand are monitored directly, as well as using a novel gel electrophoretic assay. In this assay, two strands of oligonucleotides containing 5′-and 3′-terminal thymidines are first ligated photochemically to yield thymine dimers, and repair is then assayed by monitoring the reversal of the photoligation by intercalators bound either noncovalently or at a distance. Although both NDI and a rhodium intercalator were seen to reverse the photoligation, several anthraquinones and ethidium were unable to promote repair upon irradiation at 350 nm. This photoligation reversal assay provides a rapid screen for thymine dimer repair. The oxidative repair of thymine dimers in a DNA duplex from a distance appears now to be a general phenomenon and requires consideration in developing mechanisms for DNA-mediated charge transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.