The aims were both to determine lactate and ventilatory threshold during incremental resistance training and to analyze the acute cardiorespiratory and metabolic responses during constant-load resistance exercise at lactate threshold (LT) intensity. Ten healthy men performed 2 protocols on leg press machine. The incremental test was performed to determine the lactate and ventilatory thresholds through an algorithmic adjustment method. After 48 h, a constant-load exercise at LT intensity was executed. The intensity of LT and ventilatory threshold was 27.1±3.7 and 30.3±7.9% of 1RM, respectively (P=0.142). During the constant-load resistance exercise, no significant variation was observed between set 9 and set 15 for blood lactate concentration (3.3±0.9 and 4.1±1.4 mmol x L(-1), respectively. P=0.166) and BORG scale (11.5±2.9 and 13.0±3.5, respectively, P=0.783). No significant variation was observed between set 6 and set 15 for minute ventilation (19.4±4.9 and 22.4±5.5 L x min(-1), respectively, P=0.091) and between S3 and S15 for VO2 (0.77±0.18 and 0.83±0.16 L x min(-1), respectively, P=1.0). Constant-load resistance exercise at LT intensity corresponds to a steady state of ventilatory, cardio-metabolic parameters and ratings of perceived exertion.
Decreased levels of estrogen are associated with hepatic steatosis (HS), through changes in gene expression of molecules related to fat oxidation and lipogenesis. Both resistance training (RT) and endurance training (ET) prevent HS in ovariectomized (Ovx) rats. However, the molecular events associated with this process were only investigated for ET, but not for RT. Thus, the aim of this study was to investigate the effects of Ovx and RT on the gene expression of molecules related to fat oxidation and lipogenesis in the liver of rats. Sprague-Dawley adult female rats were grouped into four (n = 6 per group): sham-operated sedentary (Sham-Sed); Ovx sedentary (Ovx-Sed); sham-Rt and Ovx-Rt. A 10-week RT period, during which the animals climbed a 1.1-m vertical ladder with weights attached to their tails, was used. The sessions were performed three times a week, with 4-9 climbs and 8-12 dynamic movements per climb. Gene expression was analyzed by RT-PCR by the ∆∆Ct method. The estrogen deficiency associated with ovariectomy decreased the gene expression of molecules related to fat oxidation, carnitine palmitoyltransferase I (53%) and β-hydroxyacyl-CoA dehydrogenase (27%), and increased molecules related to lipogenesis, sterol regulatory element-binding protein-1c (106%), acetyl-CoA carboxylase (ACC) (72%) and stearoyl CoA desaturase-1 (109%). With the exception of ACC, the ovariectomy-induced changes in the expression of these molecules were restored by RT. The present results indicate that RT has important effects on the prevention of HS in Ovx animals, through changes in gene expression of molecules related to hepatic lipid metabolism.
This study aimed to determine the expression of omentin and vaspin, inflammatory markers, body composition, and lipid profile in diet-induced obese rats and high-intensity interval training (HIIT). Forty Wistar rats were divided into four groups: untrained normal diet, trained normal diet (T-ND), untrained high-fat diet (Unt-HFD), and trained high-fat diet (T-HFD). For the animals of the Unt-HFD and T-HFD groups, a high-fat diet was offered for 4 weeks. After that, all the animals in the T-ND and T-HFD groups were submitted to HITT, three times per week, for 10 weeks (2 weeks of adaptation and 8 weeks of HIIT). Muscle (gastrocnemius), liver, epididymal adipose tissue, retroperitoneal adipose tissue, visceral adipose tissue (VAT), and serum were collected to analyze TNF-α, IL-6, PCR, IL-8, IL-10, IL-4, vaspin, and omentin. A body composition analysis was performed before adaptation to HIIT protocol and after the last exercise session using dual-energy X-ray absorptiometry. Omentin and vaspin in the VAT were quantified using Western blotting. The results showed that, when fed a high-fat diet, the animals obtained significant gains in body fat and elevated serum concentrations of vaspin and blood triglycerides. The HIIT was able to minimize body fat gain but did not reduce visceral fat despite the increase in maximum exercise capacity. Moreover, there was a reduction in the serum levels of adiponectin, IL-6, and IL-10. Finally, we concluded that, although the training protocol was able to slow down the weight gain of the animals, there was no reduction in visceral fat or an improvement in the inflammatory profile, including no changes in omentin and vaspin.
Obesity is an epidemic disease and the expansion of adipose tissue, especially visceral fat, promotes the secretion of factors that lead to comorbidities such as diabetes and cardiovascular diseases. Thus, diet and exercise have been proposed as an intervention to reverse these complications. An adipocytokine, known as irisin, mediates the beneficial effects of exercise. It has been proposed as a therapeutic potential in controlling obesity. In view of the above, this paper attempts to determine the modulation of irisin, visceral adiposity and biochemical markers in response to dietary intervention and aerobic exercise. To do this, 52 diet-induced obese male Wistar rats were divided into the following four groups: high-fat diet and exercise (HFD-Ex); HFD-Sedentary (HFD-Sed); chow-diet and exercise (CD-Exercise); and CD-Sed. The exercise-trained group performed a treadmill protocol for 60 min/day, 3 days/week for 8 weeks. Body mass (BM), body fat (BF), fat mass (FM), and fat-free mass (FFM) were analyzed. Mesenteric (MES), epididymal (EPI), and retroperitoneal (RET) adipose tissue was collected and histological analysis was performed. Biochemical irisin, triglycerides, glucose, insulin and inflammatory markers were determined and, FNDC5 protein expression was analyzed. In this study, the diet was the most important factor in reducing visceral adiposity in the short and long term. Exercise was an important factor in preserving muscle mass and reducing visceral depots after a long term. Moreover, the combination of diet and exercise can enhance these effects. Diet and exercise exclusively were the factors capable of increasing the values of irisin/FNDC5, however it did not bring cumulative effects of both interventions. Prescriptions to enhance the obesity treatments should involve reducing visceral adiposity by reducing the fat content in the diet associated with aerobic exercise.
O objetivo do estudo foi investigar os efeitos da dieta hiperlipídica e do treinamento de natação e força sobre o tecido adiposo, perfil lipídico e sistema endocanabinóide de ratos obesos exógenos. Para isso, utilizamos sessenta ratos adultos machos divididos em seis grupos: Sedentário Padrão (SP); Sedentário Hiperlipídico (SH); Natação Padrão (NP); Natação Hiperlipídica (NH); Força Padrão (FP); Força Hiperlipídica (FH). Após três semanas recebendo dieta padrão ou hiperlipídica, os animais iniciaram os protocolos de exercício. Os grupos NP e NH nadaram 60 minutos/dia, 5 dias/semana com carga de 5% do peso corporal atada ao corpo, em tanques de 50x30 cm, durante 8 semanas. Os grupos FP e FH realizaram exercício de subida em escada com pesos atados às suas caudas, uma vez a cada três dias, durante 8 semanas. Os animais dos grupos SP e SH continuaram sedentários e alimentados com suas respectivas dietas. A dieta hiperlipídica aumentou o ganho de massa corporal, peso relativo dos tecidos adiposos (epididimal, retroperitoneal, visceral e subcutâneo) e área de adipócitos (epididimal, retroperitoneal e visceral). Também aumentou o percentual de gordura de todos os tecidos adiposos e fígado, além de aumentar a expressão gênica do receptor CB1. Os grupos treinados apresentaram menores valores de área de adipócitos, melhora do perfil lipídico, menores valores no percentual de gordura dos tecidos adiposos e fígado, menores ganhos de massa corporal, além de menores expressão gênica do receptor CB1. Assim nossos resultados indicam os potenciais benefícios do treinamento força e natação, como alternativas não farmacológicas para controlar os efeitos deletérios da dieta hiperlipídica sobre o tecido adiposo, perfil lipídico, conteúdo lipídico e controle do desequilíbrio do sistema endocanabinóide provocado pela dieta hiperlipídica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.