Linking facts across documents is a challenging task, as the language used to express the same information in a sentence can vary significantly, which complicates the task of multidocument summarization. Consequently, existing approaches heavily rely on hand-crafted features, which are domain-dependent and hard to craft, or additional annotated data, which is costly to gather. To overcome these limitations, we present a novel method, which makes use of two types of sentence embeddings : universal embeddings, which are trained on a large unrelated corpus, and domainspecific embeddings, which are learned during training. To this end, we develop Sem-SentSum, a fully data-driven model able to leverage both types of sentence embeddings by building a sentence semantic relation graph. SemSentSum achieves competitive results on two types of summary, consisting of 665 bytes and 100 words. Unlike other state-of-the-art models, neither hand-crafted features nor additional annotated data are necessary, and the method is easily adaptable for other tasks. To our knowledge, we are the first to use multiple sentence embeddings for the task of multidocument summarization.
Using personalized explanations to support recommendations has been shown to increase trust and perceived quality. However, to actually obtain better recommendations, there needs to be a means for users to modify the recommendation criteria by interacting with the explanation. We present a novel technique using aspect markers that learns to generate personalized explanations of recommendations from review texts, and we show that human users significantly prefer these explanations over those produced by state-of-the-art techniques. Our work's most important innovation is that it allows users to react to a recommendation by critiquing the textual explanation: removing (symmetrically adding) certain aspects they dislike or that are no longer relevant (symmetrically that are of interest). The system updates its user model and the resulting recommendations according to the critique. This is based on a novel unsupervised critiquing method for single- and multi-step critiquing with textual explanations. Empirical results show that our system achieves good performance in adapting to the preferences expressed in multi-step critiquing and generates consistent explanations.
Automated predictions require explanations to be interpretable by humans. One type of explanation is a rationale, i.e., a selection of input features such as relevant text snippets from which the model computes the outcome. However, a single overall selection does not provide a complete explanation, e.g., weighing several aspects for decisions. To this end, we present a novel self-interpretable model called ConRAT. Inspired by how human explanations for high-level decisions are often based on key concepts, ConRAT extracts a set of text snippets as concepts and infers which ones are described in the document. Then, it explains the outcome with a linear aggregation of concepts. Two regularizers drive ConRAT to build interpretable concepts. In addition, we propose two techniques to boost the rationale and predictive performance further. Experiments on both single-and multi-aspect sentiment classification tasks show that ConRAT is the first to generate concepts that align with human rationalization while using only the overall label. Further, it outperforms state-of-the-art methods trained on each aspect label independently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.